
Real-Time Screen-Space Liquid Rendering
with Two-Sided Refractions

Takuya Imai Yoshihiro Kanamori Yukio Fukui Jun Mitani

University of Tsukuba

imai-t@npal.cs.tsukuba.ac.jp, {kanamori, fukui, mitani}@cs.tsukuba.ac.jp

Abstract
In interactive applications such as games, particle-based liquids are often used for simulation. Such liquids are
rendered with only a single refraction at the front-facing surface, which damages photorealism because it cannot
express the thickness of liquid. In this paper, we propose an approach to render particle-based liquid with twice
refraction at front- and back-facing surfaces in real time. We use two existing approaches, i.e., one is to generate
the liquid surface from particles in real time, and the other is to render a polygon mesh with handling two-sided
refraction in real time. We further accelerate the intersection calculation of the back-facing surface and viewing rays
by the secant method.

1 Introduction
In interactive applications such as games, liquid simu-

lation is performed by discretizing liquid as a finite set of
particles and by calculating the motion of particles. Re-
sults of rendering such particle-based liquids in real time
are, however, not sufficiently photorealistic because light
reflection and refraction are approximated and calculated
only once when each ray enters the liquid, which dam-
ages photorealism because it cannot express the thick-
ness of liquid.

In this paper, we propose an approach to render particle-
based liquid with two-sided refractions, considering twice
refractions at front- and back-facing surfaces in real time
(see Figure 1). For twice refractions, there exist real-time
rendering methods for polygon meshes [1, 2], which re-
quire front- and back-facing depth and normal maps. We
thus obtain depth and normal maps of particle-based liq-
uid by extending a screen-space method [3] and then
calculate twice refractions. To reduce rendering passes
required for front- and back-facing depth maps, we ob-
tain them simultaneously using Dual Depth Peeling [4].
We further accelerate the intersection calculation of the
back-facing surface and viewing rays by the secant method
instead of binary search used in [2]. We demonstrate the
effectiveness of our method through comparisons with

Figure 1: Our result of liquid rendered with twice refrac-
tions. 8,000 liquid particles are rendered at 85.9 fps at
resolution of 640×480.

two results where only a single refraction is considered
or intersections are calculated using binary search.

2 Related Work
Particle-based liquid is often rendered as metaballs.

Kanamori et al. [5] extracted metaball surfaces using Bézier

Figure 2: Overview of our method. (a) First, depth maps of front- and back-facing surfaces are created by rendering
particles as spheres. (b) Second, depth maps for both front- and back-facing surfaces are smoothed simultaneously by
applying the bilateral filter iteratively. (c) Third, normal maps are created from the smoothed depth maps. (d) Finally,
twice refractions at front- and back-facing surfaces are calculated to obtain the final result.

Clipping and Depth Peeling, which handled only a sin-
gle refraction. Gourmel et al. [6] accelerated ray tracing
of metaballs using Bounding Volume Hierarchy (BVH).
Yu and Turk [7] introduced anisotropic kernels to reduce
the bumpiness of metaball surfaces. Although these ap-
proaches can generate more photorealistic results, they
are too expensive to render liquid in real time.

Müller et al. [8] extracted liquid surfaces as screen-
space polygon meshes from particles in real time. Cords
and Staadt [3] generated a surface by smoothing a depth
map obtained after rendering particles as spheres. van
der Laan el al. [9] also smoothed depth maps using Mean
Curvature Flow, which minimizes mean curvature of liq-
uid surface. They further calculated the pseudo thickness
to imitate the thickness of liquid. These approaches tar-
get only a single refraction at front-facing surfaces with-
out handling twice refractions. In this paper we present
an approach handling twice refractions at front- and back-
facing surfaces.

Wyman [1] showed that just twice refractions at front-
and back-facing surfaces make results sufficiently pho-
torealistic for polygon meshes. However, Wyman’s ap-
proach requires precalculation of the distance from each
vertex to an exiting intersection calculated along the nor-
mal direction, which is not applicable to deformable ob-
jects. Wyman’s approach is further extended by calcu-

lating the ray-intersection at back-facing surfaces using
binary search for handling deformable objects [2] and
by calculating total internal refraction [10]. These ap-
proaches target polygon meshes. If we render particle-
based liquids using these approaches, we require depth
maps of liquid surfaces. In this paper, we achieve ren-
dering of particle-based liquid with twice refractions in
real time using a screen-space method of generating liq-
uid surfaces.

3 Our Method
3.1 Outline

The input data are the position and the radius of each
particle. We extend the method by Cords and Staadt [3]
to obtain liquid surfaces. We then extend the method by
Oliveira and Brauwers [2] to calculate twice refractions
with obtained depth maps of front- and back-facing sur-
faces of liquid. Our method approximately determines
pixel colors by linearly blending the colors of light re-
flected at the front-facing surface and light refracted at
the back-facing surface. Figure 2 shows the overview of
our method.

We improve the rendering performance as follows. Cre-
ating depth maps of front- and back-facing surfaces re-

Figure 3: Illustration of the secant method.

quires rendering a large number of spheres twice, which
is computationally expensive. To reduce the rendering
passes, we obtain the two depth maps simultaneously us-
ing Dual Depth Peeling [4]. For smoothing the depth
maps, instead of the binomial filter used in [3], we apply
the bilateral filter to preserve depth edges. We use a fil-
ter kernel of small radius and apply the filter iteratively
to reduce computational cost. Both depth maps of front-
and back-facing surfaces are smoothed simultaneously
to reduce rendering passes.

In [2], intersections of refracted rays and the back-
facing surface are calculated using binary search, which
requires additional calculation of minimum and maxi-
mum values for the back-facing depth map to limit the
search range. Instead we use the secant method to reduce
the number of iterations of ray intersection tests and to
omit min/max calculation of the depth map.

3.2 Surface Generation

We obtain liquid surfaces by rendering particles as spheres
and by smoothing the resultant depth maps, similarly to
Cords and Staadt [3]. We use an optimized method for
rendering spheres, proposed by Kanamori et al. [5]. For
smoothing the depth maps, we apply the bilateral filter
iteratively, instead of the binomial filter used in [3]. Let
D be an input depth map before smoothing. The depth
value at pixel (i, j) in the filtered depth map D′ is then

Figure 4: Solution in case that an invalid depth value
is referenced. At t = t1, the secant method cannot be
applied because Dview

back(x
′(t1),y′(t1)) is invalid. We halve

t iteratively until a valid depth value is obtained.

calculated as follows:

D′(i, j)=

w

∑
n=−w

w

∑
m=−w

D(i+m, j+n)W1(m,n)W2(m,n,i, j)

w

∑
n=−w

w

∑
m=−w

W1(m,n)W2(m,n, i, j)
,

(1)

W1(m,n) = exp
(
−m2 +n2

2σ2
1

)
, (2)

W2(m,n, i, j) = exp

(
− (D(i, j)−D(i+m, j+n))2

2σ2
2

)
,

(3)
where w is the kernel radius, and σ1 and σ2 are the con-
stants of the bilateral filter. In our results, we set σ1 =

w
2
√

2
and σ2 = 2

√
2r, where r is the particle radius. We

empirically determined w = 4 and the number of itera-
tions for filtering as 20. Finally, normal maps are cal-
culated from the smoothed depth maps, as described in
[9].

3.3 Intersection Calculation

For calculating the refraction at the back-facing sur-
face, we need to calculate the intersection of viewing
rays and back-facing surface. For this, Oliveira and Brauw-
ers applied the binary search, which requires two ini-
tial points to restrict the search range; one is nearer and
another is farther than the back-facing surface. Their
method thus additionally calculates the minimum and
maximum depth values of the back-facing depth map to
limit the search range. Instead we use the secant method

(a) Result with single refraction only (b) Result using binary search (c) Our result

Figure 5: Comparison of different rendering methods.

so that we can calculate intersections with fewer iter-
ations without additional calculation of min/max depth
values. The secant method also requires two points for
initialization but, unlike binary search, they do not have
to be points with min/max depth values.

We calculate intersections at the back-facing surface
as follows. Let P f and T f be the intersection point and
the unit directional vector of a viewing ray refracted at
the front-facing surface, respectively. Point P(t) along
the refracted ray is then expressed with a ray parameter
t(≥ 0) as follows:

P(t) = P f + t T f . (4)

Let P′(t) = (x′(t),y′(t),z′(t)) be the point obtained by
projecting P(t) = (x(t),y(t),z(t)) onto the screen. Also
let Dview

back be a depth map that records depth values in the
viewing coordinates for the back-facing surface. Dview

back(x
′(t),y′(t))

represents the depth value at (x′(t),y′(t)) in the screen
coordinates. The difference between the z component of
the point P(t) and Dview

back(x
′(t),y′(t)) is then calculated as

follows (see Figure 3):

∆z(t) = z(t)−Dview
back(x

′(t),y′(t)). (5)

We define a linear function f (t) that passes through (ts,∆z(ts))
and (te,∆z(te)), where ∆z(ts) and ∆z(te) represent the
z-component differences for two points P(ts) and P(te)
(ts < te) along the refracted ray,

f (t) =
∆z(te)−∆z(ts)

te − ts
(t − ts)+∆z(ts). (6)

Ray parameter t∗ that yields f (t∗) = 0 is calculated as

t∗ = ts −
te − ts

∆z(te)−∆z(ts)
∆z(ts). (7)

At t = t∗, ∆z(t∗) represents the difference between P(t∗)
and the back-facing surface. If |∆z(t∗)| is below a certain

threshold ε , P(t∗) is considered as the intersection of the
refracted ray and the back-facing surface. Otherwise, ei-
ther P(ts) or P(te) is replaced with P(t∗) to satisfy the
condition ts < te, and then the procedure is repeated until
convergence. At the begining, we initialize ts = 0 and te
as

te = (Z f ar −Pf .z)/Tf .z, (8)

where Z f ar is z coordinate of the far plane of the viewing
frustum, Pf .z and Tf .z are z components of P f and T f .

In case that no particles are rendered at pixel (x′(t),y′(t)),
the depth value referenced at that pixel is invalid and
thus cannot be used as the initial value for the secant
method. In this case we halve ray parameter t iteratively
until a valid depth value is obtained at (x′(t),y′(t)) (see
Figure 4).

3.4 Calculation of the Output Color

The output color C is calculated as follows:

C = F(v,n f)C f +(1−F(v,n f))Cb. (9)

where v is the unit directional vector of a viewing ray, n f

is the normal vector at the front-facing surface, C f is the
color fetched from the environment map along the direc-
tional vector reflected at the front-facing surface, Cb is
the color fetched from the environment map along the di-
rectional vector refracted at the back-facing surface, and
F is the Fresnel coefficient for which we employ Shlick’s
approximation [11].

4 Results
We implemented our method using C++ with OpenGL,

GLUT, GLUI and GLEW. We wrote the shader codes

Figure 6: The results of an animating liquid. The liquid consists of about one hundred thousand particles, and are
rendered at 79.1 fps at resolution of 640×480. Each image is obtained per 30 frames.

using GLSL. The experiments were conducted on a PC
equipped with an Intel Core i7-4770 3.40GHz CPU, 8GB
RAM, and an NVIDIA GeForce GTX TITAN GPU. The
following results were rendered at resolutions of 640×
480 and 1024× 768 using pre-simulated liquid consist-
ing of about one hundred thousand particles. The re-
ported computational times do not include the time for
simulation.

Figure 5 shows a comparison of the results using our
method, binary search used for ray-surface intersection
in [2], and with single refraction only. Also, Tables 1, 2
and 3 respectively represent the computational times re-
quired for rendering using our method, binary search,
and with single refraction only. In each table, “Depth
map” represents the construction of depth maps by ren-
dering spheres, “Smoothing” the iterative smoothing by
the bilateral filter, “Normal map” the construction of nor-
mal maps, “Min/max comp.” the calculation of min/max
values of the back-facing depth map, and “Refraction”
the calculation of refraction as well as the final colors.
Tables 1 and 2 show that our method is faster than us-
ing binary search, while the resultant images are almost
identical, as shown in Figures 5(b) and 5(c). On the other
hand, Tables 1 and 3 show that we can render images
about 1.5 times faster when we only consider single re-
fraction. However, as shown in Figures 5(a) and 5(c), our
result conveys the thickness of the liquid more faithfully.

Table 1: Computational times (msec) per frame using
our method.

640 × 480 1024 × 768

Total 12.64 30.78
Depth map 2.13 5.14
Smoothing 10.24 25.02
Normal map 0.10 0.25
Refraction 0.17 0.37

Table 2: Computational times (msec) per frame using
binary search [2].

640 × 480 1024 × 768

Total 12.72 30.88
Depth map 2.13 5.14
Smoothing 10.24 25.02
Normal map 0.10 0.25
Min/max comp. 0.12 0.20
Refraction 0.13 0.27

Table 3: Computational times (msec) per frame with sin-
gle refraction only.

640 × 480 1024 × 768

Total 8.78 19.83
Depth map 0.71 1.91
Smoothing 8.00 17.77
Normal map 0.03 0.06
Refraction 0.04 0.09

5 Conclusions and Future Work
In this paper, we have proposed a method for render-

ing particle-based liquids with handling twice refractions
in real time. We extend and utilize the previous methods
for screen-space extraction of liquid surfaces as well as
calculation of twice refractions for polygon meshes. We
enhance the rendering performance using Dual Depth
Peeling [4] to reduce rendering passes, and using the se-
cant method to reduce the cost for calculating intersec-
tions of refracted rays and back-facing surfaces.

Our method assumes that the space between front- and
back-facing surfaces is fully filled with liquid, and thus
yields unnatural refraction in case that splashes are flying
apart in front of the liquid body, as shown in Figure 6.
A solution for this problem is, for example, to calculate
more accurate refraction with three or more depth maps
by applying Dual Depth Peeling iteratively. We would
like to develop an efficient way for rendering liquid with
more complicated refractions in real time.

References
[1] Chris Wyman. An approximate image-space ap-

proach for interactive refraction. ACM Trans.
Graph., 24(3):1050–1053, 2005.

[2] Manuel M. Oliveira and Maicon Brauwers. Real-
time refraction through deformable objects. In Pro-
ceedings of the 2007 Symposium on Interactive 3D
Graphics and Games, pages 89–96, 2007.

[3] Hilko Cords and Oliver Staadt. Instant liquids. In
Poster proceedings of ACM Siggraph/Eurographics
symposium on computer animation, 2008.

[4] Louis Bavoil and Kevin Myers. Order independent
transparency with dual depth peeling. Technical re-
port, NVIDIA, 2008.

[5] Yoshihiro Kanamori, Zoltan Szego, and Tomoyuki
Nishita. GPU-based fast ray casting for a large
number of metaballs. Computer Graphics Forum,
27(2):351–360, 2008.

[6] Olivier Gourmel, Anthony Pajot, Mathias Paulin,
Loı̈c Barthe, and Pierre Poulin. Fitted BVH for fast
raytracing of metaballs. Computer Graphics Fo-
rum, 29(2):281–288, 2010.

[7] Jihun Yu and Greg Turk. Reconstructing surfaces
of particle-based fluids using anisotropic kernels.
ACM Trans. Graph., 32(1):5:1–5:12, 2013.

[8] Matthias Müller, Simon Schirm, and Stephan
Duthaler. Screen space meshes. In Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’07, pages
9–15, 2007.

[9] Wladimir J. van der Laan, Simon Green, and
Miguel Sainz. Screen space fluid rendering with
curvature flow. In Proceedings of the 2009 Sympo-
sium on Interactive 3D Graphics and Games, pages
91–98, 2009.

[10] Scott T Davis and Chris Wyman. Interactive refrac-
tions with total internal reflection. In Proceedings
of Graphics Interface 2007, pages 185–190, 2007.

[11] Christophe Schlick. An inexpensive BRDF model
for physically-based rendering. Computer Graph-
ics Forum, 13(3):233–246, 1994.

