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Abstract

Paper, a kind of everyday material, has shown its ability to form three-dimensional (3D)
structures as we can see in origami. Origami, also known as paper folding, has a long
history, which maybe since the invention of paper. Such operations continue to this day
and most of us have the experience of folding crane and frog in our childhood. Recently,
origami, the centuries-old art forms, has taken off to new heights. Benefiting from the de-
veloping mathematical understanding, more and more complex and detailed origami pieces
emerged. In addition, designing an origami becomes more efficient with the help of the
computer-aided-design software, using which the user can preview the final shape.

Origami also gained much attention in science and engineering owing to its unique
properties, e.g., developability, flat-foldability, and scale-independent. It has already pro-
vided solutions in nature, e.g., tree leaves and insect wings. The material for folding is not
limited to paper, but can be metal, plastic, and shape memory polymers for specific appli-
cations. Applying origami-concepts has lead to lots of applications in various areas, e.g.,
DNA origami, self-folding robots, and foldable solar panels. Despite the growing attention,
designing an origami considering its geometric constraints is still difficult.

The 3D origami, which is a kind of origami with a 3D structure, is a relatively new
area comparing to flat-foldable origami (2D origami). It can generate geometrically ele-
gant 3D structures and could be applied in engineering. The 3D origami focused in this
study contains a set of polygons, and thus a planar constraint, which requires all vertices
of a polygon lie on the same plane, should be satisfied. Triangle-based 3D origami is the
simplest polygon-based 3D origami. It does not need to consider the planar constraint,
however geometric constraints still limit its design space and make it hard to design. This
thesis presents several design methods for the triangle-based 3D origami. Our work illus-
trates the ability for generating 3D structures using triangle-based origami, which not only
provides variations of paper folding but also gives greater opportunity for applications.

Axisymmetric 3D origami is preferred by designers because it is relatively easy to fabri-
cate and more stable. On the other hand, non-axisymmetric 3D origami is more flexible and
thus can produce many types of shapes. In this thesis, three methods for the axisymmetric
3D origami and a method for axisymmetric or non-axisymmetric 3D origami are proposed.
In particular, the proposed methods contain four parts: (1) a design method for axisym-
metric 3D origami based on rotationally-symmetric crease patterns, (2) a design method
for tucking axisymmetric 3D origami based on rotationally-symmetric crease patterns, (3)
a design method for axisymmetric 3D origami with generic six-crease bases, (4) a method
for approximating 3D surfaces with varying or constant curvatures using generalized wa-
terbomb tessellations.

Firstly, a design method for axisymmetric 3D origami based on rotationally-symmetric
crease patterns is proposed. First, the geometric definition of the crease pattern is given.
Based on the type of the crease pattern, the developable constraint can be satisfied. Then,



the 3D geometry is analytically calculated. Furthermore, the proposed method explores the
variations of the geometry by changing parameters, which lead to two rigid motions.

Secondly, a design method for tucking the axisymmetric 3D origami based on rotationally-
symmetric crease patterns is proposed. This method can handle the crease pattern consist-
ing of interior vertices having non-zero angle deficit generated during the 3D editing. Those
interior vertices having non-zero angle deficit could lead to blank spaces, which contain no
creases and thus hinder us from folding. Here, a procedure to place flaps outside or tucks
inside to handle the blank spaces is proposed. The flaps or tucks make the edited shape
realizable.

Thirdly, a method to design axisymmetric 3D origami with generic six-crease bases is
proposed. Inspired by the conventional six-crease bases, i.e., waterbomb base or Yoshimura
base, where six regular crease lines meet at an interior vertex, this method generalizes the
base so that the lengths of the creases can be regular or irregular. First, the crease pattern
consisting of such generic bases is interactively generated. Then, our method analytically
calculates the 3D geometry with an axisymmetric structure. Furthermore, exploring various
configurations, i.e., sets of input parameters, are demonstrated. The 3D origami can have
multiple degrees of freedom, but by continually changing one parameter, a motion that can
axisymmetrically deploy or flatten the shape is presented.

Fourthly, a method for approximating target surfaces, which can be axisymmetry or
non-axisymmetry, using generalized waterbomb tessellations is proposed. The target sur-
faces are represented as parametric surfaces. First, a base mesh by tiling the target surface
using waterbomb bases is generated. Then, by applying a simple numerical optimization
algorithm to the base mesh, a developable waterbomb tessellation is achieved. Owing to the
high degree of freedom of the waterbomb tessellation, orientable or non-orientable target
surfaces can be handled.

We conduct results of origami pieces and demonstrate that our methods enable us to
fabricate 3D structures by folding. Finally, we conclude this thesis and outlook the future.
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Chapter 1

Introduction

This chapter gives an introduction in terms of origami and the main goals of this thesis.
Then, it summarizes methods and results contributed by the thesis. Finally, it concludes
with a short overview of the organization of this document.

Origami, the centuries-old art forms, is also known as paper folding. The term of
origami has the Japanese roots “ori” meaning “folded” and “kami” meaning “paper” [46].
Traditional origami usually involves straight folds on a square piece of paper. Tearing,
cutting or gluing are not allowed. Although it has a long history, origami continue to
this day and most of us have the experience of folding crane and frog in our childhood.
The resultant origami piece is achieved through a series of folding operations. Formally,
the folding is a continuum of isometric embeddings of the paper in R3 and it permits to
touch but not cross each paper [15]. Despite its simplicity, origami have produced lots of
geometric shapes and some of them can be very complex and detail.

Recently, origami has taken off to new heights. Benefiting from a developing mathemat-
ical understanding, more and more complex and detailed origami pieces emerged. Some
of the designs contain hundreds of folding and thus cannot be easily fabricated through a
trial-and-error process. In addition, designing an origami becomes more efficient with the
help of the computer-aided-design (CAD) software, using which the user can preview the
final shape.

Origami can provide elegant solutions in nature, e.g., tree leaves and insect wings. It
has been of growing interest to the scientific and engineering community due to its unique
properties, e.g., developability, flat-foldability, and scale-independent. Developability en-
ables an origami to be unfolded as a flat plane without stretching. Flat-foldability makes
an origami be folded flat. Scale-independent enables the crease pattern of an origami to be
folded at centimeter scale or meter scale. Besides, the material for folding is not limited
to paper, but can be metal, plastic, and shape memory polymers for specific applications.
Applying origami-concepts has lead to lots of applications in various areas.

The 3D origami, which is a kind of origami with a 3D structure, is a relatively new area
comparing to flat-foldable origami (2D origami). The 3D origami focused in this study
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contains a set of polygons and can generate geometrically elegant 3D structures, some of
which could be applied in architecture. Triangle-based 3D origami is the simplest polygon-
based 3D origami. Several conventional triangle-based origami patterns, e.g., waterbomb
tessellation [1], Yoshimura pattern [92, 36, 83], Nojima pattern [67], and Resch’s pattern
[69, 70], have been proposed (Figure 1.1). Besides, by applying such patterns, lots of
applications have been achieved.

Figure 1.1: Examples of conventional triangle-based origami patterns. (a) A waterbomb
tessellation, where the top shows a crease pattern and the bottom shows an origami piece.
(b) A Yoshimura pattern, where the top shows a crease pattern and the bottom shows an
origami piece. (c) A Nojima pattern. Image adopted from [75]. (d) A Resch’s pattern.
Image adopted from [70].

However, designing a triangle-based 3D origami is difficult, even if the planar con-
straint, which requires all vertices of a polygon lie on the same plane, is satisfied. Geomet-
ric constraints, e.g., developability, still limit its design space and make it hard to design.
Several design methods exist for 3D origami, however, due to each origami has its own
geometric constraints, and thus these existing methods cannot fully handle this kind of
origami. Therefore, in this thesis, we focus on the triangle-based 3D origami and propose
several design methods. The further advance of this type of origami not only contribute to
the area of paper folding, but also to the related areas.

1.1 Motivation
Triangle-based origami can be found in the conventional origami patterns. Although planar
constraint naturally satisfied, restricted design space limits its variations. On the applica-
tion side, most studies are based on the conventional patterns, e.g., Yoshimura pattern and
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waterbomb tessellation. Therefore, variations of this kind of origami not only generates
novel designs but also provide greater opportunities for applications.

In this thesis, the focus is drawn on the 3D origami consisting of triangular facets and
several novel design methods are proposed. Fully explanations in terms of geometric def-
inition, calculation, and simple folding simulation, will be described. In addition, several
novel designs and potential usage will be illustrated. Several prototype systems will be
provided. With the help of these systems, users can interactively design a 3D origami and
quickly explore its variations. Finally, we hope these methods could inspire more and more
novel designs and pave the way of applying.

1.2 Principal Contributions
We focus on the triangle-based 3D origami and proposed several design methods. First,
we propose three design methods for the 3D origami with an axisymmetric structure. The
axisymmetric origami can be widely noticed, because it is relatively easy to fabricate and
more stable. Second, we focus on an inverse-origami-design problem, which uses origami
to fit target 3D surfaces. Generalized waterbomb tessellations are used for approximating
target surfaces represented as parametric surfaces.

In particular, we present the following methods:

1. Axisymmetric 3D origami based on rotationally-symmetric crease patterns [96]

2. Tucking axisymmetric 3D origami

3. Axisymmetric 3D origami with generic six-crease bases [97]

4. Approximating 3D surfaces using generalized waterbomb tessellations [95]

The detailed contributions to each method are described as follows:
Axisymmetric 3D origami based on rotationally-symmetric crease patterns: We pro-
pose a novel design method for axisymmetric 3D origami based on rotationally-symmetric
crease patterns (Figure 1.2 (a)). Benefiting from the symmetry property, the developable
constraint of the origami can be satisfied. Then, we describe the detailed calculation of the
geometry (the left model shown in Figure 1.2 (b)). We implemented a prototype design
system, using which users can interactively design the crease pattern and explore various
shapes with real-time interaction. Furthermore, we simulate two one-parameter rigid mo-
tions. One motion shows a rigid transformation from one folded state to a flat state (Figure
1.2 (b)). The other shows a motion that can flat fold the shape about a common axis (Figure
1.2 (c)).
Tucking axisymmetric 3D origami: We focus on the kind of axisymmetric triangle-based
3D origami folded from the rotationally-symmetric crease patterns and propose a design
method for tucking such origami. Our method can handle the crease pattern consisting of
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Figure 1.2: Contributions of the design method for axisymmetric 3D origami based on
rotationally-symmetric crease patterns. (a) A rotationally-symmetric crease pattern. (b) A
rigid motion from a folded state to a flat state. The 3D origami is folded from the crease
pattern shown in (a). (c) A motion that can flat fold the shape about a common axis.

interior vertices having non-zero angle deficit (e.g., p2 and p4 in Figure 1.3 (a)) generated
during the editing in 3D space. Editing the 3D origami while retaining each angle deficit of
interior vertices equals zero, i.e., the sum of the angles around each interior vertex retains
360 degrees, is difficult. Those interior vertices with non-zero angle deficit could generate
blank spaces (unfold areas shown in Figure 1.3 (a)), which hinder us from folding, or
invalid crease pattern due to self-intersections. Here, we focus the former case and propose
a computational procedure to handle blank spaces emerged in the crease pattern. We first
divide such blank spaces into triangular facets by considering an edge symmetry. Then, we
calculate the resultant 3D shape with flaps outside (Figure 1.3 (b)) or tucks inside, which
are folded from such areas. By adding flaps or tucks, we make the origami realizable
through tucking. Finally, on the application side, we describe a load-bearing experiment
on a stool shape-like origami to demonstrate the potential usage.
Axisymmetric 3D origami with generic six-crease bases: We propose a method to design
axisymmetric 3D origami with generic six-crease bases. Inspired by the conventional six-
crease bases, i.e., waterbomb base or Yoshimura base, where six regular crease lines meet
at an interior vertex, we generalize the base so that the lengths of the crease lines can
be regular or irregular. The geometry of such a crease pattern ensures the satisfaction of
the developability. The proposed method is based on designing a mirror-symmetric crease
pattern (Figure 1.4 (a)) and then analytically calculates the axisymmetric shape (Figure
1.4 (b)). Furthermore, exploring various configurations, i.e., a set of input parameters, are
demonstrated. Besides, this method presents a motion that can axisymmetrically deploy or
flatten the shape by continually changing one parameter.
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Figure 1.3: Contributions of the tucking axisymmetric 3D origami. (a) A crease pattern
with blank spaces. (b) A calculated 3D origami with flaps outside.

Figure 1.4: Contributions of the design method for axisymmetric 3D origami with generic
six-crease bases. (a) A mirror-symmetric crease pattern with generic six-crease bases. (b)
A calculated axisymmetric 3D origami.

Approximating 3D surfaces using generalized waterbomb tessellations: Origami could
transform flat sheets of paper into complex geometries through folding crease patterns. Wa-
terbomb tessellation has been used to create geometrically appealing 3D shapes and been
widely studied. Here, we propose a method for approximating target surfaces, which are
parametric surfaces of varying or constant curvatures, using generalized waterbomb tessel-
lations. We first generate a base mesh by tiling the target surface using waterbomb bases.
Then, by applying a simple numerical optimization algorithm to the base mesh, we achieve
a developable waterbomb tessellation. We provide a prototype system using which the user
can adjust the resolutions of the tessellation and modify waterbomb bases. It is the first
work for approximating 3D surfaces using generalized waterbomb tessellations. Our work
could extend the exploration of building developable 3D structures using origami.
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1.3 Outline
This thesis begins by reviewing related work in Chapter 2. We introduce preliminaries
knowledge on origami. Then, we introduce several fundamental mathematics, including
operations on paper, developable constraint, and theorems on flat-foldability. Besides, we
describe related studies in terms of designing 2D and 3D origami. Finally, we overview
several origami-inspired applications.

In Chapter 3, a design method for axisymmetric 3D origami based on rotationally-
symmetric crease patterns is proposed. The geometry of the 3D shape are defined. Then,
detailed calculations are presented. Depending on the analysis of the geometry, two kinds
of one-parameter rigid motion are described.

In Chapter 4, a computational procedure to handle the crease pattern with blank spaces,
caused by interior vertices with non-zero angle deficit, is proposed. Flaps outside and tucks
inside are calculated from such blank areas. By adding flaps or tucks, the shape becomes
realizable through tucking without cutting.

In Chapter 5, a method to design axisymmetric 3D origami with generic six-crease
bases is proposed. The generic base is inspired by the conventional six-crease bases. The
geometry of the 3D origami is given and detailed calculations are presented. Furthermore,
a design space is explored by enumerating configurations. Last, a one-parameter rigid
motion is presented.

In Chapter 6, a method for approximating target surfaces using generalized waterbomb
tessellations is described. A base mesh is generated by tiling the target surface using water-
bomb bases. Then, a developable waterbomb tessellation is achieved by applying a simple
numerical optimization algorithm. Several results of varying curvatures are demonstrated.

Chapter 7 summarizes the conclusions of this thesis and provides future research direc-
tions.

1.4 Publications and Awards

1.4.1 Reference papers
This thesis is based on the following publications:

Journal papers (with peer review)

1. Y. Zhao, Y. Kanamori, J. Mitani, “Geometry of Axisymmetric 3D Origami Consist-
ing of Triangular Facets”, Journal for Geometry and Graphics, Vol. 21, No. 1, pp.
107-118, 2017.

2. Y. Zhao, Y. Kanamori, J. Mitani, “Design and Motion Analysis of Axisymmetric 3D
Origami with Generic Six-crease Bases”, Computer Aided Geometric Design, Vol.
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59, No. Supplement C, pp. 86-97, 2018.

3. Y. Zhao, Y. Endo, Y. Kanamori, J. Mitani, “Approximating 3D Surfaces using Gen-
eralized Waterbomb Tessellations”, Journal of Computational Design and Engineer-
ing, 2018 (Accepted).

International poster (without peer review)

1. Y. Zhao, Y. Kanamori, J. Mitani, “Simulation of Triangle-based Axisymmetric Rigid
Origami”, In International Conference on Mathematical Modeling and Applications,
Tokyo, Japan, November 2016.

Domestic conference papers (without peer review)

1. Y. Zhao, Y. Kanamori, J. Mitani, “A Computational Design Method for Tucking
Axisymmetric 3D Origami Consisting of Triangle Facets”, The Japan Society for
Industrial and Applied Mathematics Annual Conference 2016, pp. 80-81, September
2016.

2. Y. Zhao, Y. Endo, Y. Kanamori, J. Mitani, “Triangle-based Axisymmetric 3D Origami
Design”, The Japan Society for Industrial and Applied Mathematics Annual Confer-
ence 2017, pp. 399-400, September 2017.

1.4.2 Other papers
The additional following papers were also published but not directly related to this thesis:

International conference paper (with peer review)

1. Y. Zhao, Y. Sugiura, M. Tada, J. Mitani, “InsTangible: A Tangible User Interface
Combining Pop-up Cards with Conductive Ink Printing”, In International Confer-
ence on Entertainment Computing 2017, pp. 72-80, Tsukuba, Japan, September
2017.

Domestic conference paper (with peer review)

1. Y. Zhao, K. Matsuyama, F. Chiba, K. Konno, “A Study of Inside Surface Shape
Reconstruction from Refitted Flakes Based on Point Clouds Segmentation”, NICO-
GRAPH 2013, pp. 49-52, CD-ROM, 2013 (in Japanese).
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Chapter 2

Related Work

Origami, which is folding a piece of paper, can generate very complex 2D and 3D shapes.
It is not only an activity belonging to human beings, but can be found and provide efficient
solutions in nature, e.g., the flexible configuration of hornbeam leaves [42, 11] and fold-
able insect wings [31]. Furthermore, researches have learned from origami and applied its
concepts in engineering. Before describing our design methods, we first introduce several
preliminaries knowledge and fundamental mathematics. Then, we introduce several ex-
isting design methods for 2D and 3D origami and describe origami-inspired applications.
Finally, we focus on triangle-based designs and applications.

2.1 Preliminaries
Traditionally, the piece of paper used in origami is often assumed to be a square [18]. We
expand this assumption and allow our piece of paper could be planar polygon throughout
this thesis.

For documenting an origami, origami diagrams and crease patterns are widely used.
Origami diagrams, i.e., a sequence of step-by-step instruction depicting how to fold an
origami, is used for illustrating the folding procedure (e.g., Figure 2.1 (a)). Benefiting from
the notions, e.g., lines and arrows indicating the position of the folds and the movement of
the paper, they are relatively easy to be followed. However, as the origami pieces became
more and more detailed and complex, the number of instructions for folding are dramati-
cally increased.

The crease pattern is another documentation for representing (e.g., Figure 2.1 (b)). Dif-
ferent from the origami diagrams, which require a number of figures depicting the instruc-
tions, the crease pattern is only one figure which contains the pattern of creases left on the
paper after folding an origami piece. The crease pattern contains a set of creases, each of
which is a line segment (or, in some cases, a curve) on a piece of paper. Creases may be
folded as a mountain fold or as a valley fold. A mountain fold forms a convex crease at
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Figure 2.1: Examples of origami diagrams and crease pattern for a paper crane. (a) Origami
diagrams by Andrew Hudson. (b) A crease pattern exported by ORIPA [55].

Figure 2.2: A crease pattern may be folded as a mountain (in red) or a valley (in blue).

top with the paper beside the crease folded down. On the other hand, a valley fold forms
a concave crease with both sides folded up [90] (e.g., Figure 2.2). Actually, the mountain
and valley assignments are interchanged when changing the point of view, i.e., the face of
the paper, and thus two types of folds can be considered as dual to each other [21]. Using
crease pattern for documenting origami is efficient, but it is difficult for nonexperts because
it does not contain any procedural information. Representing an origami piece using crease
pattern becomes important, because most of the recent techniques were developed for it.
Besides, it is not appropriate to use origami diagrams to represent the origami, e.g., water-
bomb tessellations and Yoshimura patterns, because such an origami is not folded step by
step. Considering the above context, we use the crease pattern for representing an origami
piece in this thesis.
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Figure 2.3: Huzita-Hatori (Huzita-Justin) axioms.

2.2 Mathematical principles of origami
Origami began as a trial-and-error art design. Benefiting from the developing mathematical
understanding, more and more complex and detailed origami pieces emerged. Here, we
introduce several fundamental mathematical principles, including Huzita-Hatori axioms,
constraints of developability and flat-foldability.

2.2.1 Huzita-Hatori axioms
Huzita-Hatori (Huzita-Justin) axioms [28] which describe the operations that can be made
for folding a piece of paper by referring to points and lines. Such axioms were firstly
discovered by Jacques Justin in 1989, then improved by Humiaki Huzita in 1991, and
finalized by Koshiro Hatori, Justin and Robert Lang in 2001 [13]. We depict the axioms in
Figure 2.3 and describe them as follows:

• Given two distinct points p1 and p2, there is a unique fold that passes through both of
them.

• Given two distinct points p1 and p2, there is a unique fold that places p1 onto p2.

• Given two distinct (straight) lines l1 and l2, there is a fold that places l1 onto l2.

• Given one line l1 and one point p1, there is a unique fold perpendicular to l1 that
passes through point p1.
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• Given one line l1 and two distinct points p1 and p2, which are not on this line, there
is a fold that places p1 onto l1 and passes through p2.

• Given two distinct points p1 and p2 and two distinct lines l1 and l2, there is a fold that
places p1 onto l1 and p2 onto l2.

• Given one point p and two lines l1 and l2, there is a fold that places p onto l1 and is
perpendicular to l2.

Based on these axioms Tsuruta et al. [86, 87, 88] proposed several CAD systems for explo-
rating the variations of the origami. In addition, Ida et al. [37] presented a computational
system called Eos (E-Origami system), which provided the fold method based on such
axioms.

2.2.2 Constraint of developability
The origami should satisfy the developable constraint, which requires an origami can be
developable onto a flat plane without stretching. An angle constraint [78], defined in Eq.
2.1, is used for determining a developable vertex (Figure 2.4 left).

Di = 360◦ −
Ki−1∑
k=0

αi,k = 0, (2.1)

where Ki is the total number of sector angles around vertex i, and αi,k is the k-th incident
sector angle of vertex i. In our work, we classify vertices as interior and boundary vertices.
For a developable surface, all the interior vertices should satisfy this angle constraint.

Figure 2.4: Flat-foldable vertex [78].
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2.2.3 Constraint of flat-foldability
Most origami pieces can be found to be flat-foldable, although such a constraint is not a
necessary for designing a 3D origami. However, this feature enables the origami to reach
a compact folded state where all facets are parallel to each other, and thus can be applied
to built large origami structures which can be folded into a much smaller space for specific
applications, e.g., transportation.

There exist several local flat-foldable conditions, i.e., Kawasaki’s theorem [40] and
Maekawa’s theorem [39], which are used to determine the flat-foldability of a single vertex
with a surrounding crease pattern (e.g., Figure 2.4 left). Kawasaki’s theorem is defined as
follows:

αi,1 − αi,2 + αi,3 − αi,4 + · · ·+ αi,2n−1 − αi,2n = 0◦ (2.2)

or another way as follows:

αi,1 + αi,3 + · · ·+ αi,2n−1 = αi,2 + αi,4 + · · ·+ αi,2n = 180◦ (2.3)

Maekawa’s theorem is another criterion for one flat-foldable vertex, which defines as fol-
lows (Figure 2.4 left):

|M − V | = 2, (2.4)

where M and V represent the number of mountain and valley creases, respectively. This
theorem requires the numbers of mountains and valleys always differ by 2. Kawasaki’s
theorem alone is however sufficient to predict flat-foldability of a single vertex. A further
explanation of these theorems can be referred to [5].

For determining a global flat-foldability of a given crease pattern consisting of multi-
vertex, Kawasaki’s theorem is a necessary but not sufficient condition. Such a problem is
proven to be a problem of NP-complete [5].

2.3 Design methods of origami
We first introduce existing design methods for 2D origami. Then, we review several ap-
proaches for designing 3D origami.

2.3.1 Design methods for flat-foldable origami
The tree method is a practical computational origami design method for achieving desired
shapes. Its basic concept was first introduced by Meguro [54]. Then, Lang [45] fully
described the theory of the tree method and implemented as an origami design software
TreeMaker [44]. This software takes a weighted graph tree (Figure 2.5 (a)), which captures
the essential features of a target object, as an input. Then, the software generates a crease
pattern (Figure 2.5 (b)) based on the input graph tree. Even though the crease pattern is
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Figure 2.5: TreeMaker software sequence (Images adopted from [8]).

calculated, it requires an expert folder to achieve such a complex origami shape, which in
this case is a scorpion (Figure 2.5 (c)).

Origami tessellation is generally a kind of flat origami. It became a specific area of
origami originated by Shuzo Fujimoto [48]. Davis et al. [10] demonstrated many 3D tes-
sellations investigated by David Huffman. Recently, Gjerde [30] provided an introduction
to this folding techniques. The crease pattern of an origami tessellation is generated from
a tiled plane. Bateman [4] developed a computer program Tess for generating origami
tessellations (Figure 2.6 (a)). The user can vary several key parameters and specify the
symmetry pattern. The designed tessellations are theoretically easy to fold because the
user only needs to twist one part of the paper over another. However, the actual fabrication
work is hard considering the material of the paper could be crumpled. More recently, Ya-
mamoto et al. proposed a method to express binary “pixel art” on the square grid pattern
by the overlapping layers of the origami tessellation. They developed a system called as
“ORI-RELIFE PIX” [91] is available on the Web.

Editing the crease pattern is a key issue of designing an origami. ORIPA is a dedicated
crease pattern editor developed by Mitani [56, 55] (Figure 2.6 (b)). ORIPA enables the user
to draw a crease pattern, but also illustrate the folded shape when the crease pattern is flat-
foldable. Furthermore, it provides the rendering of a flat origami from its crease pattern,
which is an NP-complete problem, by using a brute force to determine the ordering of the
layers [57].

Enumerating the variations of the flat-foldable origami becomes possible benefiting
from the growing computational power of the computer. Based on the Huzita-Hatori ax-
ioms introduced in the previous Section 2.2.1, Tsuruta et al. [87] proposed an interactive
system for exploring simple origami models by random generation of folded pieces. The
implemented system assists the user to recognize a folded shape as another object (e.g., an
animal, insect, or flower) based on the color and physical appearance. Later, Tsuruta et al.
[88] demonstrated various new folded pieces and considered symmetry property in their
system called as Origaminista (Figure 2.6 (c)). Matsukawa et al. [53] enumerated all
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Figure 2.6: Examples of flat-foldable origami design systems. (a) Tess: origami tessellation
software. (b) ORIPA: origami pattern editor. (c) Origaminista: a browser-based application
which generates simple origami pieces. (d) CP finder.

possible shapes folded from the crease patterns based on a 45-degree grid system, i.e., the
square/diagonal grid of a 4×4 size. They found 259,650,300 locally-flat-foldable crease
patterns and 13,452 folded shapes. Furthermore, based on the enumerated results, they
developed an application CP finder to search the crease pattern which is folded into a
user-specified shape (Figure 2.6 (d)).

2.3.2 Design methods for 3D Origami
Tachi proposed Origamizer method [80] which is the first practical approach for obtain-
ing a crease pattern which folds into a given polyhedral surface based on a topological disc
condition, e.g., a 374-triangle Stanford bunny shown in Figure 2.7 (a). He implemented
the algorithm as a computer software called as “Origamizer” [76]. The Origamizer soft-
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Figure 2.7: Examples of 3D origami design methods proposed by Tachi. (a) Origamizer
software applied to Stanford bunny, where the real-world folding shown on the left and
the computed crease pattern shown on the right. Images adopted from [19]. (b) Freeform
origami used to edit a waterbomb tessellation in 3D. Image adopted from [78]. (c) Freeform
origami tessellations by generalizing Resch′s patterns. Images adopted from [81].

ware, however, could sometimes fail to give a solution or generate highly inefficient crease
patterns. More recently, Demaine and Tachi developed the Origamizer algorithm that
is guaranteed to find a feasible foldings for any orientable polyhedral manifold [19]. By
using the Origamizer software, although the appearance of the resulting origami becomes
equivalent to the target shape, it might be thought that the crease pattern is too complicated
even for a simple model [58].

Freeform Origami [78] developed by Tachi allows the user to vary a known origami
in 3D while preserving the developability and other optional conditions inherent in the
crease pattern. The system can edit a given pattern into a freeform through dragging the
vertices in 3D (Figure 2.7 (b)). Then, he proposed a system [81] for generating a target
shape by using a subset of generalized Resch patterns. This method inserts a tuck structure
in the 3D form and numerically solves the geometric constraints of the developability and
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local collision (Figure 2.7 (c)).
Most origami uses straight creases and this type of origami is also referred to as pris-

matic origami [17] due to straight creases surround planar facets and compose a polyhedral
surface. A more general class of folding are based on curved creases. Comparing to the
prismatic origami, the curved-crease origami can achieve an elegant curved 3D structure
using a small number of creases. Designing a curved-crease origami is difficult due to its
mathematical foundation have not been fully developed. Although the designing curved-
crease origami is beyond the scope of this thesis, we briefly introduce several methods in
this challenging area.

Bauhaus model [32] is the earliest known curved-crease sculpture from a students work
at the Bauhaus. This model is made of concentric circles with alternating mountain and
valley folds (Figure 2.8 (a)). Huffman described the local behavior of a crease by introduc-
ing spherical trigonometry on the Gauss sphere [35]. Based on his theory, a design of lens
tessellations [16] and a number of masterpieces, e.g., hexagonal column with cusps [14]
shown in Figure 2.8 (b), were proposed. LeKlint company proposes a lamp design [38],
which is almost the same way Huffman did in his approach (Figure 2.8 (c)). Kilian et al.
proposed a curved folding approach [41] which can reconstruct a car model based on the
design of Gregory Epps (Figure 2.8 (d)). Their approach applied planar quadrangle meshes
(PQ-meshes) and used an optimization process.

Figure 2.8: Examples of curved-crease origami. (a) The Bauhaus model [32]. (b) David
Huffman and his “hexagonal column with cusps” [14]. (c) A lamp design [38]. (d) Recon-
struction of the car model designed by Gregory Epps [41].

Handling curved folds is still a difficult problem. However, by limiting the curve to be
planar, the problem becomes drastically simple [62]. In particular, Mitani [58] proposed
a design method based on rotational sweeping a 2D polyline around a common axis. To
ensure the shape is folded from a single sheet of paper, this method adds appropriate flaps
between the polygonal faces which constitute the final shape. When the input polyline is
smooth curved, this method can generate 3D curved origami (Figure 2.9 (a)). The imple-
mented system ORI −REV O is available at [60]. More recently, he proposed a variant of
this method where the flaps are replaced by “triangular prism protrusions” [59]. Mitani and
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Figure 2.9: Examples of 3D origami design methods proposed by Mitani. (a) A design
method for 3D origami based on rotational sweep. Images adopted from [58], where the
left shows a smooth curved polyline as an input, the middle shows the calculated 3D shape,
and the right shows its crease pattern. (b) An interactive design of planar curved folding
by reflection. Images adopted from [62]. (c) A column-shaped origami design based on
mirror reflections. Images adopted from [61], where the left shows profile polyline, the
middle shows the trajectory polyline, and the right shows the resulting shape.

Igarashi [62] proposed an interactive user interface for designing curved-crease origami.
This method is based on the fact that when a part of a developable surface is reflected with
a mirror operation, the resulting shape retains developable. In their implemented system,
the user can interactively click and drag a point on a surface and see the changing of the
shape (Figure 2.9 (b)). Later, Mitani [61] proposed a new method, which combines the re-
flection and sweep operations, to design column-shaped origami. The method determines
a 3D shape by a profile polyline and a trajectory polyline. When sweeping a smooth profile
curve, this method can generate curved-crease origami (Figure 2.9 (c)).

Inverse origami design aims to fit a target 3D surface using predefined crease pat-
tern. It is another research direction of designing 3D origami. The Origamizer algorithm
[77, 80] fit 3D triangle mesh models with a topological disc condition. His another method
[81] apply a subset of generalized Resch patterns to approximate a target shape. The above
approaches require to insert tuck structures in the 3D form. By dragging the vertices in
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3D, the Freeform Origami [78] system enables the user to edit a given pattern into a
freeform. However, the method cannot fully support approximating target 3D surfaces. In
addition, several approximating approaches based on modified Miura-ori have been pro-
posed. Zhou et al. [98] developed the “vertex method” to inversely calculate a developable
crease pattern of a given 3D geometry. Song et al. [74] proposed a mathematical frame-
work for the generation of rigid-foldable 3D origami based on the crease pattern that can
simultaneously fit two doubly curved surfaces with rotational symmetry about a common
axis. Dudte et al. [20] used modified Miura cells to approximate orientable 3D surfaces
with positive, zero, negative, and mixed Gauss curvatures (Figure 2.10).

Figure 2.10: Generalized Miura-ori tessellations fitting target surfaces. The top row depicts
calculated 3D surfaces, while the bottom row shows physical models. Images adopted from
[20].

2.4 Origami-inspired applications
Origami has not only aroused considerable research interest in mathematics but provide
effective solutions in engineering. The developable feature of origami inspired the designs,
e.g., airbags design [9, 34] and shelters design[12, 84, 52, 68, 6]. Flat-foldable feature
inspired the applications, such as crash boxes [50, 51], origami tubes [27]. The scale-
independent feature leads to apply origami concepts at centimeter scale, e.g., self-folding
robots [33, 49, 25, 26, 65], or meter scale, e.g., foldable solar panels [64, 99, 100] and
telescope [22, 47, 89]. Besides, origami have also been applied on DNA folding [71, 85,
66, 23] and drug delivery [94].

In addition, the advances in material science and robotics engineering accelerate the
development of self − folding origami. In this area, origami becomes more active by
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reacting to various stimuli. In particular, Ahmed et al. [2] introduced a concept of multi-
field responsive origami, which actively folds in response to electric and magnetic. Ryu et
al. [72] proposed photo-origami, which can be folded with light. Furthermore, An et al.
[3] build a single self-folding sheet by using folding actuators.

2.5 Triangle-based origami designs and applications
Designing a 3D origami constructed by triangular facets is convenient due to the planar
constraint does not need to be considered. Triangular meshes are simple and provide more
freedom of movement than quadrilateral meshes [79]. Benefiting from its high freedom,
Francis et al. [29] proposed a backpack design (Figure 2.11 (a)). Tachi et al. [82] achieved
adaptive freeform surfaces, which could be applied in architecture (Figure 2.11 (b)). Fur-
thermore, inspired by this kind of origami, Kuribayashi and You [43, 93] proposed an
origami stent graft for biomedical application (Figure 2.11 (c)). Lee et al. [49] proposed a
deformable wheel robot (Figure 2.11 (d)).

Figure 2.11: Triangle-based origami designs and applications. (a) A backpack design.
Image adopted from [29]. (b) An adaptive freeform surface. Image adopted from [82].
(c) An origami stent graft made from a semi-rigid sheet. Image adopted from [93]. (d) A
deformable wheel robot. Image adopted from [49].
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Chapter 3

Axisymmetric 3D origami based on
rotationally-symmetric crease patterns

Designing 3D origami is a new challenging area comparing to the designing 2D origami.
Axisymmetric 3D origami is preferred by origami designers due to such an origami is
relatively easy to be fabricated. In addition, the folded axisymmetric 3D origami could be
more stable than non-axisymmetric one when fabricated. Using a set of triangular facets
to construct an axisymmetric 3D origami do not need to consider the planar constraint,
however the developable constraint limits the design space, and thus the user cannot freely
design.

In this chapter, we focus on a category of axisymmetric triangle-based 3D origami
folded from rotationally-symmetric crease patterns. We first define the geometry of the
rotationally-symmetric crease pattern. Based on such a crease pattern, developable con-
straint can be satisfied. Then, we analytically calculate the axisymmetric 3D shape.

In particular, Figure 3.1 shows an overview of our method. We first design the right of
the 1/N part (N = 8 for this example) of the whole crease pattern (Figure 3.1 (a)), where
N indicates the order of rotational symmetry (N > 2) and the angle θ is determined by
N , i.e., θ = 180◦/N . After the 1/N part has been specified, we generate the rotationally-
symmetric crease pattern (Figure 3.1 (b)) by repeating such part N − 1 times around the
origin. Next, we calculate the 3D origami (Figure 3.1 (c)) from its crease pattern. Here, we
first calculate the 1/N part of the 3D origami from its crease pattern together with the user-
specified angle ϕ between edge P0P1 and the z axis. Note that Pi and P ′

i (with even indices)
has a planar symmetry with respect to a plane through the z axis and Pi (with odd indices).
Then, the axisymmetric structure of the 3D origami can be achieved by iteratively rotating
its 1/N part about the z axis. Finally, based on the generated 3D model, we determine the
mountain and valley assignments on the crease pattern, which are used to fold an origami
piece (Figure 3.1 (d)). We also implemented a prototype system, using which the user
can interactively design a 3D origami by editing its crease pattern with real-time human
interaction.
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Figure 3.1: An overview of our method.

3.1 Designing crease pattern
Our method is based on designing the crease pattern. In this section, we describe the
rotationally-symmetric crease pattern consisting of triangular facets. Figure 3.2 (a) shows
a 1/N part of the crease pattern, and Figure 3.2 (b) shows the shape in 3D space. The
symbols in Figure 3.2 are defined as follows:

• Planes Π1 and Π2 are vertical planes whose intersecting lines with the horizontal
plane (i.e., the x− y plane) are lines l1 and l2, respectively.

• P0 is located at the origin in 3D space and expressed as p0, indicating the intersection
point of lines l1 and l2 on the horizontal plane.

• θ is the angle between lines l1 and l2, which equals 180◦/N , and expressed as Θ in
3D space, indicating the angle between planes Π1 and Π2.

• P1 and P3 (with odd indices) lie on the plane Π1 and represent p1 and p3 along line
l1 in the crease pattern, respectively.

• P2 and P4 (with even indices) lie on the plane Π2 and represent p2 and p4 along line
l2 in the crease pattern, respectively.

• P ′
2 and P ′

4 (denoted as p′
2 and p′

4 in the crease pattern) are the symmetric points of P2

and P4 with respect to plane Π1, respectively.

Note that pi and p′
i (with even indices) has a symmetry with respect to the line l1.

The rotationally-symmetric crease pattern can be interactively designed. Specifically, as
shown in Figure 3.2 (a), the θ in the crease pattern can be changed byN(N > 2). pi(i > 0)
can be added or deleted along lines l1 and l2. Furthermore, pi(i > 0) can be moved along
lines l1 or l2. After the right part is specified, the symmetric points with respect to line l1
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are calculated. Finally, as shown in Figure 3.2 (c), the whole crease pattern is generated
by repeating the 1/N part around the origin N − 1 times by 2θ. The mountain and valley
assignments are not determined until the 3D model is generated (Section 3.2.2).

Figure 3.2: Designing rotationally-symmetric crease pattern consisting of triangular facets.

3.2 Calculation of 3D origami
In this section, we describe a method to calculate each point on the 3D origami based
on its crease pattern (using the example shown in Figure 3.1). P0 is located at the origin
in 3D space. Each 3D Pi(i > 0) is calculated sequentially in the order of its index. In
Section 3.2.1, we describe the calculation of P1 separately because a user-specified angle
ϕ is needed. In Section 3.2.2, the calculation of Pi(i > 1) is described. In Section 3.2.3, a
special case during calculation is given.

3.2.1 Calculation of P1

To calculate the 3D coordinates of P1, the following constraints should be satisfied:

1. The distance between P1 and P0 should be the same as the length of edge p1p0 in the
crease pattern.

2. P1 should lie on the plane Π1.

3. Angle ϕ (0◦ ≤ ϕ ≤ 180◦) between line P0P1 and the z axis should be the same as
the user-specified value.

23



Figure 3.3 shows the process for calculating P1. Firstly, considering constraint 1), the
possible solutions for P1 in 3D space lie on the red sphere (Figure 3.3 (a)) whose center
is P0 and radius equals the length of edge p1p0, which is measured from the crease pattern
(Figure 3.1 (a)). Secondly, considering constraint 2), the possible solutions are shown as a
red solution circle (Figure 3.3 (b) and (c)), which is the intersection between the red sphere
and plane Π1. Finally, by specifying the angle ϕ between line P0P1 and the z axis, the
3D coordinates of P1 are determined. Figure 3.3 (b) and (c) show the solution of P1 with
ϕ = 66◦ and ϕ = 140◦, respectively. The angle ϕ is set to 66◦ and fixed throughout the
subsequent calculation of the remaining 3D points.

Figure 3.3: Calculation of P1.

3.2.2 Calculation of Pi(i > 1)

In the sequential calculation of Pi, the 3D coordinates of Pi−1 and Pi−2 are required. For
calculating Pi(i > 1), the following three constraints should be satisfied:

1. The distance between Pi and Pi−1 should be the same as the length of edge pipi−1 in
the crease pattern.

2. The distance between Pi and Pi−2 should be the same as the length of edge pipi−2 in
the crease pattern.

3. Pi should lie on the plane Π1 (for odd index) or Π2 (for even index).

For generating Pi(i = 2) (Figure 3.4), the 3D coordinates of P1 and P0 are required.
In Figure 3.4 (a) and (c), we first consider constraint 1) between Pi and Pi−1 (i.e., P2 and
P1 in this example). The possible solutions for P2 in 3D space lie on a sphere, called a
solution sphere, whose center is P1 and radius equals the length of edge p2p1. Then, by
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Figure 3.4: Calculation of Pi(i = 2).

considering constraint 3), the solution circle shown in red is obtained from the previous
solution sphere intersected by plane Π2. Next, by considering constraint 2) between Pi
and Pi−2 (i.e., P2 and P0) and constraint 3), we obtain the solution circle shown in green
on plane Π2 whose center is P0 and radius equals the length of edge p2p0. Finally, the
two intersection points between the two solution circles (the red one and the green one)
that satisfy all the constraints at the same time are selected as two candidate solutions for
Pi(i = 2). For the solution of P2 (with even index), the symmetric point P ′

2 with respect to
plane Π1 is calculated. After the 1/N part of the 3D origami is specified, the axisymmetric
3D origami is generated by iteratively rotating its 1/N part about the z axis through 2Θ, as
shown in Figure 3.4 (b) and (d), respectively.

The calculation process of Pi(i = 3), which lies on plane Π1, is shown in Figure 3.5.
By satisfying all the constraints, the two intersection points of the two solution circles on
plane Π1 are selected as candidate solutions for Pi(i = 3) (Figure 3.5 (a) and (c)). For

Figure 3.5: Calculation of Pi(i = 3).
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Figure 3.6: Calculation of Pi(i = 4)

designing various shapes of 3D origami, either candidate can be selected as the solution
of P3 (Figure 3.5 (b) and (d)). However, one solution could flatten two connected facets
(Figure 3.5 (d)); thus, the crease lines between such flattened facets are rendered in green.

We also show the calculation for Pi(i = 4), which lies on plane Π2, with the constraints
from P3 and P2 (Figure 3.6). The shape (Figure 3.6 (b)) is the 3D model introduced in
Figure 3.1 (c). We then determine the mountain and valley assignments on a 3D model and
then translate them to the crease pattern (Figure 3.1 (b)) to fold the origami piece (Figure
3.1 (d)).

3.2.3 Special Case in Calculation of Pi(i > 1)

The candidate solutions for each Pi(i > 1) are two intersection points of the two solution
circles as described in Section 3.2.2. A special case occurs when the two solution circles
are identical. Then, the candidate solutions for Pi(i > 1) are not just two points but all the
points along the solution circle.

Figure 3.7 shows one example of the special case for calculating P3, where ϕ = 90◦

and line P2P1 is vertical to plane Π1. In such a case, the solution circle shown in red is
constructed by points that satisfy constraints 1) and 3). The other solution circle shown in
green is constructed by the points that satisfy constraint 2) and 3). Both circles share the
same center P1 and have the same radius, which is the length of edge p3p1. As a result, the
candidate solutions for P3 in this case are not just two points but all the points along the
solution circle. In Figure 3.7, P3 can be selected arbitrarily on the solution circle to design
various 3D origami.
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Figure 3.7: Special case in calculation.

3.3 Effects on geometry
In this section, we analyze the effects of variations by changing the parameters including
angle ϕ (Section 3.3.1) and angle Θ (Section 3.3.2).

3.3.1 Changing angle ϕ
The 3D origami is a developable surface, which means that it is isometric to a planar shape,
i.e., the distance within the surface between any two points is equal to the distance between
the corresponding points in the plane. When angle ϕ is changed continuously, the shape of
our 3D origami is also changed correspondingly while retaining its developability. We can
recalculate the shape efficiently due to the following reasons:

1. The change in angle ϕ only affects P1 directly.

2. Each subsequent Pi(i > 1) is to be recalculated sequentially, which means Pi is not
recalculated until the previous Pi−1 and Pi−2 have been recalculated.

3. Each Pi(i > 1) is recalculated based on Pi−1 and Pi−2, which have already been
recalculated.

The user can explore various origami models by only changing angle ϕ. Figure 3.8
shows some possible origami models. We set ϕ to 66◦ (Figure 3.8 (b)) to obtain the shape
we introduced in Figure 3.1 (c). Figure 3.8 (d) shows that the 3D origami can be completely
unfolded just the same as the 2D crease pattern. With angle ϕ set from 66◦ to 90◦, we
can figure out a continuous folding motion that shows the change from the fold-state to
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Figure 3.8: Various origami designs obtained by changing ϕ from 0◦ to 180◦: (a) ϕ = 0◦,
(b) ϕ = 66◦, (c) ϕ = 83◦, (d) ϕ = 90◦, (e) ϕ = 97◦, (f) ϕ = 115◦, (g) ϕ = 135◦, (h)
ϕ = 180◦.

the unfold-state of such a 3D origami. Although ϕ can theoretically be from 0◦ to 180◦,
penetration between triangular facets could happen at some values of ϕ (Figure 3.8 (a), (f),
(g) and (h)). We leave it up to the user in the designing process to avoid such illegal values
of ϕ to generate real-world origami pieces.

3.3.2 Changing angle Θ

Θ denotes the angle between planes Π1 and Π2 in 3D space, which equals 180◦/N . Af-
ter the 1/N part of the origami model is calculated, the axisymmetric origami model is
generated by iteratively rotating its 1/N part about the z axis N − 1 times through 2Θ.

Here, we decrease Θ, expressed as Θ
′ , from 180◦/N to 0◦. By inserting an extra bound-
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ary line in the crease pattern, we keep the developability of the 3D model. Then, we verify
the flat-foldability of each interior vertex on the crease pattern by Kawasaki’s theorem and
Maekawa’s theorem, leading to a way of folding called “along-arc flat-folding”.

Specifically, we first decrease Θ to Θ
′ and then use Θ

′ to generate the 1/N part of the
origami model. Note that such a 1/N part still maintains a developable surface as each 3D
edge is equivalent to the corresponding edge on the flat plane (crease pattern). Then, we

Figure 3.9: Preparation for along-arc flat-folding.

iteratively rotate the 1/N part about the z axis N − 1 times through 2Θ
′ to generate the

whole origami model (Figure 3.9 (a)). Note that the last 1/N part is separated from the first
1/N part, which breaks the developable property. In this situation, we insert a boundary
line in the crease pattern (Figure 3.9 (b)) to maintain the developability of the whole 3D
model.

The process of decreasing angle Θ
′ makes Pi (with even indices) on plane Π2 together

with the symmetric P ′
i fall towards plane Π1. For the whole 3D model, such a process

compresses the 3D origami towards plane Π1. Here, we check the flat-foldability of the 3D
origami by verifying the flat-foldability of each interior point using Kawasaki’s theorem
and Maekawa’s theorem.

In Figure 3.9 (c), without loss of generality, we verify the flat-foldability of the interior
points by showing the details of the crease pattern around P1 and P4, which lie on the planes
Π1 and Π2, respectively. Angle αi,k denotes the k−th incident sector angle of pi. For P1,
since α1,1 = α1,2 and α1,3 = α1,4 and thus α1,1 +α1,3 = α1,2 +α1,4 = 180◦, which satisfies
Kawasaki’s theorem. Also, since the number of mountain lines (3) minus the number of
valley lines (1) equals 2, Maekawa’s theorem is satisfied. Similarly, for P4, since α4,1 =
α4,2, α4,3 = α4,6 and α4,4 = α4,5, and thus α4,1 + α4,3 + α4,5 = α4,2 + α4,4 + α4,6 = 180◦,
which satisfies Kawasaki’s theorem. Also, since the number of mountain lines (4) minus
the number of valley lines (2) equals 2, Maekawa’s theorem is satisfied. If all interior points
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satisfy Kawasaki’s theorem and Maekawa’s theorem, we can decrease Θ
′ to 0◦ to fold the

whole 3D model around the z axis (Figure 3.14 (b)), which is a way of folding called
“along-arc flat-folding”. In general, benefiting from the mirror symmetry in each 1/N part
crease pattern and the rotational symmetry of the whole crease pattern, local flat-foldable
conditions can be satisfied.

3.4 Results
We developed a prototype system, using which the user can interactively design a 3D shape
by editing its crease pattern. The system contains three windows as shown in Figure 3.10
(a), (b), and (c), where (a) is used to design the part of the crease pattern, (b) renders the
3D shape, and (c) shows the whole crease pattern. For designing an origami, the user can
edit the crease pattern by adding, deleting, and dragging vertices in the crease pattern editor
window (Figure 3.10 (a)). In particular, p4 is dragged as shown in Figure 3.10 (d). At the
same time, the 3D shape and the crease pattern will be changed as shown in Figure 3.10 (e)
and (f), respectively. The user can also switch the candidates of p4 by double-clicking p4
on the crease pattern editor window (Figure 3.10 (d)) to achieve different shape shown in
Figure 3.10 (g).

Figure 3.10: A prototype system implemented our algorithm.

We show several resulting origami pieces in Figure 3.11 and Figure 3.13, where the first
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column is the crease pattern, the second column is the 3D model, and the third column is
the photo of the origami piece. Figure 3.11 shows the 3D origami pieces constructed with
triangular facets. In Figure 3.12, we show the folding motion of the origami (Figure 3.11)
from the fold-state to the flat-state by changing parameter ϕ.

Figure 3.11: Resulting origami pieces with triangular facets.

By applying the special case, we design origami pieces that have both a flat center
area and triangular facets, as shown in Figure 3.13. Figure 3.14 shows the “along-arc flat-
folding” of the 3D origami shown in Figure 3.11 (b) and (c). The photo of the real origami
pieces and the folded shapes are shown in Figure 3.15.

3.5 Summary
We described a design method for a category of axisymmetric triangle-based 3D origami
folded from rotationally-symmetric crease patterns. We introduced a rotationally-symmetric
crease pattern and then described the details of the calculation. For the calculation of
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Figure 3.12: Flat-folding motion.

Pi(i > 1), the two intersection points of the solution circles were selected as solution can-
didates. Each of them was used to create different 3D models. During the calculation, we
found a special case where the two solution circles are identical; thus, the candidate solu-
tions are not two points but all the points on the solution circle. We have applied the special
case in designing origami pieces with a flat center.

We demonstrated the variations of the geometry by changing two parameters: angle ϕ
and Θ. First, we changed ϕ, which is the angle between the edge P0P1 and the z axis.
The benefit of the process of generating the 3D origami is, for each updated ϕ, the updated
model remains developability. This enables us to explore various origami designs and
figure out a folding motion from the fold-state to the flat-state of such a 3D origami. Next,
we introduced a way of folding called “along-arc flat-folding” by changing the value of Θ,
which is the angle between planes Π1 and Π2, from 180◦/N to 0◦. To keep consistency
between the crease pattern and the 3D model, we inserted a cut line in the crease pattern.
Then, we checked the flat-foldability of the 3D origami by verifying the flat-foldability of
each interior point using Kawasaki’s theorem and Maekawa’s theorem. We showed the
“along-arc flat-folding” sequences and practiced such folding in real origami pieces.
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Figure 3.13: Resulting origami pieces with flat center area and triangular facets.
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Figure 3.14: Along-arc flat-folding sequences.

Figure 3.15: Along-arc flat-folding of real origami pieces.
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Chapter 4

Tucking axisymmetric 3D origami

The method [96] described in the previous chapter can only handle the crease pattern con-
taining interior vertices having zero angle deficit, which indicates that the sum of the angles
around each interior vertex is equal to 360 degrees. However, such a crease pattern is hard
to be generated when editing the origami in 3D space.Those interior vertices with non-
zero angle deficit become an obstacle to achieve a realizable 3D origami. In this chapter,
we focus on the kind of axisymmetric triangle-based 3D origami folded from rotationally-
symmetric crease patterns [96] and propose a design method for handling interior vertices
with non-zero angle deficit generated during the 3D editing. As a result, the edited 3D
shape becomes realizable through tucking a piece of paper without cutting.

An overview of our method is shown in Figure 4.1. First, we take one 3D origami (e.g.,
Figure 4.1 (a)) as an input and then edit the 3D shape by moving its Pi(i > 1). Mountain
and valley folded lines are rendered in red and blue, respectively. We render the crease
lines connected by two almost flat facets in green. Pi (with odd indices) can be moved
along plane Π1 and Pi (with even indices) can be moved along plane Π2.

Hereafter, we set i as four and move P4 along plane Π2 (Figure 4.1 (b)). During the
3D editing process, the crease pattern is updated by recalculating the location of p4 with
considering the distance constraints between PiPi−1 and PiPi−2 (Figure 4.1 (c)). The sum
of the angles around interior vertex could be larger than or less than 360 degrees in the
updated crease pattern. Intersections occur between crease lines when such a value is larger
than 360 degrees. We call these patterns invalid. On the other hand, blank spaces (unfolded
areas), colored in gray in Figure 4.1 (c), emerge in the crease pattern when the sum of the
angles around interior vertices p2 and p4 are less than 360 degrees. Blank spaces hinder us
from folding the resulting 3D origami.

Editing 3D origami while retaining angle deficit for each interior vertex equals zero is
difficult. Here, we propose a computational procedure to handle blank spaces by adding
crease lines (Figure 4.1 (c)) and calculate flaps outside (Figure 4.1 (d)) or tucks inside,
which are folded from such areas. By adding flaps or tucks on the edited 3D shapes, we
make such shapes realizable by tucking its crease pattern.
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Figure 4.1: An overview of our method.

4.1 Methodology

4.1.1 Calculating 3D Origami with flaps or tucks
First, we introduce our user interface for 3D editing. Second, we describe a calculation
of 3D flaps folded from quadrilateral blank spaces. Last, we describe a general case for
calculating 3D flaps that are folded by polygonal blank spaces.

The origami is edited by moving its Pi (with odd indices) along plane Π1 and Pi (with
even indices) along plane Π2. Figure 4.2 (a) shows the origami be edited by moving P4

along plane Π2. P4 can be moved along the u direction (Figure 4.2 (b) or (c)) and the
v direction (Figure 4.2 (d) or (e)) on the plane Π2. Because the u and v directions are
orthogonal, P4 can be flexibly moved on plane Π2 by moving along such two directions
repeatedly.

During the design process, the system recalculates its crease pattern to keep it congruent
with the newly edited 3D shape. Specifically, for the shape shown in Figure 4.2 (e), we
calculate the new position of p4 (Figure 4.3 (a)) that makes the distance between p4p3 and
p4p2 the same as the distance between P4P3 and P4P2, respectively. Although p4′′ also
satisfies such distance constraints, we leave such selection because it generates an invalid
crease pattern with intersections. The updated crease pattern is shown in Figure 4.3 (b) and
the detail around interior vertex p2 is shown in Figure 4.3 (c) where the angle ai,k denotes
the k−th incident sector angle of pi. Note that the sum of the angles around interior vertex
p2 is less than 360 degrees, and thus the blank spaces shown in gray emerge (Figure 4.3
(b)).

Editing an origami in 3D space can hardly retain zero angle deficit for each interior
vertex. Figure 4.4 shows the updated crease patterns corresponding to the 3D shapes shown
in Figure 4.2, respectively. The new position of p4 (Figure 4.4 (b) and (d)) makes the sum
of the angles around p2 larger than 360 degrees, thereby leading to invalid crease patterns
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Figure 4.2: Designing origami in 3D space.

due to intersections. By checking the sum of the angles around an interior point, our system
can give feedback to the user when an invalid crease pattern is generated. When the sum of
the angles around p2 is less than 360 degrees, blank spaces without crease lines are emerged
in the crease pattern (Figure 4.4 (c) and (e)) hindering us from folding.

For tucking the 3D origami with blank spaces, we add crease lines in the blank space
under symmetry property. Consider the crease pattern in Figure 4.5 (a) and its part shown
in (b), where the blank space is quadrilateral. To make the edges p2p

′
4 and p′

4p6 coincide
with p2p4 and p4p6, respectively, by folds, we first add a crease line between p2 and p6
to divide the blank space p2p4′p6p4 equally. Then, we add a new point t4 along segment
p2p6 with two crease lines t4p4 and t4p

′
4 to fold the blank space. Note that t4 takes any

position on the segment p2p6. Next, we calculate the shape of a flap or tuck in 3D space
by calculating the coordinates of T4, whose distances to P2, P4, and P6 are |p2t4|, |p4t4|,
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Figure 4.3: Recalculating crease pattern.

and |p6t4|, respectively. Therefore, T4 lies on the intersection points of three spheres whose
centers are P2, P4, and P6 and radius equal |p2t4|, |p4t4|, and |p6t4|, respectively. If two
intersection points exist, our system allows the user to choose either of them as the solution
of T4 to obtain different result (Figure 4.5 (c) and (d)).

Figure 4.4: Updated crease patterns corresponding to the operations shown in Figure 4.2.
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Figure 4.5: Calculate 3D shape of flap.

We can also explore various 3D flaps by moving t4 along the segment p2p6. Figure 4.6
(a) shows one scenario where three choices of t4, i.e., t4,1, t4,2, t4,3 and the resulting 3D
origami are shown in Figure 4.6 (b), (c), and (d), respectively. Some location of t4 could
make the generated 3D flaps penetrate facets in the resulting 3D origami (Figure 4.6 (b)). In
such a situation, the user changes t4 to another location (e.g., t4,2 or t4,3) until no penetration
occurs (if such a location exists). By interactively editing possible 3D flaps, the user can
find and revise the invalid location of t4 in the design process. Using a computational way
to add crease lines without causing penetrations is left as future work.

Figure 4.6: Variation of 3D flaps.

Last, we describe a general case for calculating 3D flaps that are folded by polygonal
blank spaces. As shown in Figure 4.7, (a) shows a 3D origami and (b) shows its crease
pattern whose blank spaces are polygons. Edges p3p

′
5, p

′
5p

′
7, and p′

7p9 should coincide with
p3p5, p5p7, and p7p9, respectively, by folds. We first equally divide the polygonal area by
adding a crease line p3p9. Then, we divide such area into triangles by adding t5 and t7
along segment p3p9 as shown in (c). Finally, we calculate the 3D coordinates of T5 with the
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distance constraints from P3, P5, and P7. In the same way, T7 is calculated by considering
the distance constraints from T5, P7, and P9. Because the points are positioned inside of
the shape, the blank space area is folded inside as a tuck, as shown in (d). This process is
also applicable for general polygons that have more than six vertices.

Figure 4.7: Calculating 3D flaps folded from polygonal blank spaces.

4.1.2 Special case of 3D flaps
On the basis of the aforementioned explanation, the system adds flaps outside or tucks
inside of the 3D origami. In this section, we describe a special case where 3D flaps lie
exactly on the surface of the 3D origami. Figure 4.8 shows one example of such a special
case.

P5, the middle point of P4 and P4
′, is on the plane Π1 because P4 and P4

′ are symmetric
to the plane Π1. In addition, P5 makes P3P5P4 a 90-degree angle. P7, which is another
middle point of P6 and P6

′, makes P5P7P6 a 90-degree angle. P5, P4, P6, and P7 are
coplanar because line P4P4

′ is parallel to line P6P6
′. Next, we add appropriate crease lines

in the blank space as shown in Figure 4.8 (b) and the part shown in (c). Angles p3p5t5 and
p5p7t7 should equal 90 degrees to let flaps lie exactly on the surface. Therefore, we specify
t5 by extending line p4p5 and line p4′p5′. Similarly, t7 is specified by extending line p6p7
and line p6′p7′. Under such a configuration, the calculated flaps lie exactly on the surface of
3D origami (Figure 4.8 (a)). As a result, the 3D flaps become a part of the origami whatever
they are viewed from inside or outside.
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Figure 4.8: Special case of 3D flaps.

4.2 Results
We updated the prototype system, introduced in the previous chapter, for supporting 3D
editing. Figure 4.9 shows such a process, where (a) is an input 3D origami. Here, the
user can select one vertex, e.g., P4, by clicking. The system also shows a plane which the
selected vertex can be moved (Figure 4.9 (b)). Then, the user can move P4 along v and u
directions by dragging as shown in Figure 4.9 (c) and (d), respectively. After adding P5

(Figure 4.9 (e)) and P6 (Figure 4.9 (f)), the user can achieve a 3D shape. Finally, by adding
flags outside (Figure 4.9 (g)), the shape shown in Figure 4.9 (f) can be achieved by folding.
Note that our system allows the user to change the shape of the flap (Figure 4.9 (h)).

We show several resulting 3D origami pieces in this section. In Figure 4.10: (a) shows
the flaps lie outside of the 3D origami and (b) shows a similar shape but with a flat center
area; (c) shows the tucks inside of the 3D origami; (d) shows the 3D origami piece whose
flaps lie exactly on itself. Figure 4.11 illustrates the 3D origami pieces with two types of
flaps, where (a) has a flat center area and (b) is consisting of triangular facets.

Figure 4.12 shows two 3D origami pieces with the shape of a stool. Such origami pieces
are locked by tucks and thus do not easily open at the bottom when we put pressure on their
top surfaces. Such a feature could be potentially used as a stool for sitting. Therefore, we
fabricated the origami piece (Figure 4.12 (a)) using polypropylene with 0.75 mm thickness
to demonstrate its potential usage. The length and width of the material used in this ex-
periment were about 50 cm. We made all crease lines on the top surface of the material
using a cutting plotter. Then, to valley fold smoothly, we manually made valley lines on
the other side of the material. We took almost two hours to fold the material. As a result,
we obtained an origami stool (Figure 4.13 (a)) with 22 cm length and width and 15 cm
height without gluing. Furthermore, we found that a two-year-old boy of 13 kg could sit
on it (Figure 4.13 (b)).
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Figure 4.9: A graphical user interface for supporting 3D editing.

Beyond observation of this experiment, we found that bending and distortions occurred
in some facet of the origami stool. The main reason could be that we did not consider
designing an origami piece with material thickness. Revising crease patterns to adapt for
thick material is left as future work.

4.3 Summary
We focused on a family of axisymmetric triangle-based 3D origami folded from the rotationally-
symmetric crease patterns and proposed a computational design method for tucking such
origami. We described the procedure for handling blank spaces caused by non-zero angle
deficit of interior vertices and the calculation of the flaps outside or tucks inside folded
from such areas. We demonstrated several new 3D origami pieces with flaps or tucks. Fi-
nally, we did a load-bearing experiment on a stool shape-like origami to demonstrate the
potential usage of our origami piece.

The Origamizer algorithm by Tachi [80, 76, 19] is a general approach based on the
tucking technique, a technique to hide the unnecessary areas of a sheet of paper inside the
shape. The algorithm places the triangles on the plane with some margins that are “tucked”
inside. Our approach is similar to this. Tachi utilizes a numerical optimization, while our
approach is based on a simple analytical formula because of the symmetric property of the
target shape. Although the Origamizer can handle our target shapes, the generated pattern
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Figure 4.10: Resulting origami pieces with 3D flaps or tucks.

tends to be overly complicated because adding tucks inside is the one and only solution.
However, our system adds tucks outside (we call them “flaps”) if adding tucks inside is not
a simple solution.

As future work, four aspects of this study can be improved: (i) using a computational
way to add crease lines in the blank spaces without causing penetrations, (ii) revising crease
patterns with considering the thickness of material, (iii) exploring an optimal shape of tucks
or flaps to increase the strength of the origami structure, (iv) analysing physical changes of
paper during the process of tucking flaps or tucks.
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Figure 4.11: Resulting origami pieces with two types of 3D flaps.

Figure 4.12: Resulting origami pieces with shape of stool.

Figure 4.13: Load bearing experiment on stool shape-like origami with tucks inside.
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Chapter 5

Axisymmetric 3D Origami with Generic
Six-crease Bases

Among the crease patterns, the waterbomb tessellation (Figure 1.1 (a)) and Yoshimura
pattern (Figure 1.1 (b)) with interior vertices having six-crease lines are widely used and
have been widely researched. The interior vertex surrounded by six creases is referred
to as a six-crease base. When the length of the symmetric creases is equal, such a base
is referred to as a regular six-crease base. Besides, origami patterns, e.g., Miura-ori [63]
and its generalization (Figure 5.1), can be noted that they are consisting of four-crease
bases. Comparing to the four-crease-base origami, origami constructed by six-crease bases
is simple and provide more freedom of movement.

Figure 5.1: Origami consisting of four-crease bases. (a) Miura-ori. (b) Generalized Miura-
ori pattern. For each origami, the left shows the crease pattern and the right shows a par-
tially folded state. In the crease pattern, mountain creases are indicated by solid lines and
valley folds by dashed lines. Fold lines of the same colour have the same fold angle. Images
adopted from [24].

Most existing studies based on the six-crease patterns are focused on the regular bases.
In this chapter, inspired by the regular six-crease base, we present our generalization of
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the base, enabling the lengths of the crease lines to be regular or irregular. By using such
generic bases, variations of this kind of origami can be increased. Furthermore, the 3D
origami constructed by generic bases could be more flexible than the origami based on
regular bases for specific applications. First, we interactively generate a crease pattern con-
sisting of such generic bases (Figure 5.2 (a)). Then, our method analytically calculates the
3D origami shape with an axisymmetric structure (Figure 5.2 (b)). Finally, while referring
to the shape of the 3D origami, the user can fabricate the 3D origami piece (Figure 5.2
(d)). The 3D origami consisting of triangular facets has multiple DOFs, but by continually
changing one parameter, we present a motion that can axisymmetrically deploy or flatten
the shape around the z axis (Figure 5.2 (c)).

Figure 5.2: An overview of our method.

5.1 Designing 3D origami

5.1.1 Designing crease pattern
We describe the crease pattern made using generic six-crease bases. Figure 5.3 (a) shows
a 1/N part of the crease pattern (where N indicates the order of rotational symmetry and
equals 10 in this example), (b) shows the corresponding part in 3D space. pi(i = 1, 2, 3, ...)
denote the points in the 2D crease pattern, and Pi(i = 1, 2, 3, ...) indicate the corresponding
points in 3D space. l1 and l2 are two parallel lines. pi (with odd indices) lie on line l1 and pi
(with even indices) lie on line l2. p

′
i (with even indices) are the symmetric points of pi with

respect to line l1. The crease pattern can be interactively designed. Specifically, we can
adjust the space between lines l1 and l2. We can also move, add, and delete pi along lines
l1 or l2. For a newly added pi(i > 2), we place crease lines pipi−1 and pipi−2, to guarantee
that all interior points have valence six. After the 1/N part of the crease pattern is specified,
we generate the whole crease pattern by repeating the 1/N part N times (Figure 5.3 (c)).

Figure 5.3 (b) illustrates the overall layout of the pattern in 3D space. O is the origin
of a Cartesian coordinate system. Π1 is a vertical plane passing through the z axis and y
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Figure 5.3: Designing crease pattern.

axis. Π2 is another vertical plane passing through the z axis. Θ, which equals 180◦/N , is
an angle between such two vertical planes. Pi (with odd indices) lie on the plane Π1 and
Pi (with even indices) lie on the plane Π2. P ′

i and Pi (with even indices) are symmetric
with respect to plane Π1. After the 1/N part of the 3D origami is calculated, we achieve
the axisymmetric 3D shape by iteratively rotating its 1/N part about the z axis.

We also introduce a parameter T to represent the number of editable points in the 1/N
part of the crease pattern (e.g., T = 9 in Figure 5.3 (a)). Note that every interior vertex
having six crease lines has a mirror-symmetric property. We can make the six crease lines
of the interior vertex irregular (e.g., |p3p1| 6= |p3p5| and |p3p2| 6= |p3p4| at p3) because
pi are interactively moved in the crease pattern. Using such a crease pattern consisting of
regular or irregular six-crease bases, we can generate novel 3D origami (e.g., the origami
pieces shown in Figure 5.13).

5.1.2 Calculation of each 3D point
We take the generated 1/N part of the crease pattern (shown in Figure 5.3(a)) as an input
and describe a method to calculate each point on 3D origami. Pi is calculated sequentially
in the order of its index. First, we use Eq. 5.1 to define P1 on the plane Π1 (Figure 5.4 (b)).

P1 = (0, L sin(ϕ), L cos(ϕ)), (5.1)

where L indicates the length of |OP1| and ϕ represents the angle between OP1 and the
z axis. As shown in Figure 5.4, ϕ is set as 58◦ for generating (a). V is the foot of the
perpendicular from P1 to the z axis.
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Figure 5.4: Determination of P1.

Next, we calculate the 3D coordinates of P2 based on the following constraints: (i) the
distance between P2 and P1 should be the same as |p2p1| in the crease pattern, (ii) P2 should
lie on the plane Π2. To satisfy these two constraints, we achieve candidates for P2, which
are gathered on the solution circle shown in red, the center of which is represented as C2

(Figure 5.5 (a) and (b)). To achieve one solution of P2, we introduce a parameter denoting
as β, which is the angle between C2P2 and the z axis. By specifying the angle β ranging
from 0◦ to 360◦, we can achieve various P2, as examples shown in Figure 5.5 (a) and (b),
where β equals 0◦ and 90◦, respectively. The solution circle shown in red is an intersection
of plane Π2 and a sphere, the center of which is P1 and the radius of which equals |p1p2|.
Here, we introduce an upper bound of L as Lb, when the solution circle degenerates to one
point C2 (Figure 5.5 (c)). Lb can be defined as Eq. 5.2 in right triangle OV P1.

Lb =
|V P1|
sin(ϕ)

. (5.2)

Meanwhile, |V P1| is defined as Eq. 5.3 in right triangle V P2P1.

|V P1| =
|P1P2|
sin(Θ)

. (5.3)

By substituting Eq. 5.3 for Eq. 5.2, we can achieve Lb in Eq. 5.4:

Lb =
|P1P2|

sin(Θ) sin(ϕ)
=

|p1p2|
sin(180◦/N) sin(ϕ)

. (5.4)
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Figure 5.5: Calculation of P2.

Note that |p1p2| and N are given by the crease pattern, and thus for a given crease pattern
Lb is related to another input ϕ.

Next, we calculate the 3D coordinates of Pi (i > 2) based on the following constraints:
(i) the distance between Pi and Pi−1 should be the same as |pipi−1| in the crease pattern, (ii)
the distance between Pi and Pi−2 should be the same as |pipi−2| in the crease pattern, (iii)
Pi should lie on the plane Π1 (for an odd index) or Π2 (for an even index). We set i = 5
and describe the calculation of P5 (Figure 5.6). P5 lies on the plane Π1 and is connected
to P4 and P3. First, by considering the distance constraint between P5 and P4, we achieve
the candidates that are gathered on the circle shown in green. Second, by considering
the distance constraint between P5 and P3, we achieve the candidates that are gathered
on the circle shown in red. Finally, two intersection points between the two circles (the
red one and the green one) that satisfy all the constraints at the same time are selected
as two candidates for P5 (if they exist). Our system gives feedback when no candidates
achieved and allows us to select when two candidates exist. By selecting either of them,
we can achieve different shapes of 3D origami (Figure 5.6 (a) and (b)). After all Pi and
P

′
i (with even indices) are calculated, we achieve the 1/N part of the 3D origami. Then,

by iteratively rotating such 3D part about the z axis, we can achieve the resultant shape of
3D origami (Figure 5.4 (a)). Finally, based on the generated 3D model, we determine the
mountain and valley assignments on its crease pattern (Figure 5.3 (c)).

The space of 3D origami consisting of triangular facets could be very rich. For a cal-
culated 3D origami (whose crease pattern and choices for selecting 3D candidates are de-
termined), we explore its variations by changing parameters ϕ, L, and β in the discrete
domain. We refer to a set of ϕ, L, and β as a configuration. We set a range of ϕ from 0◦ to
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Figure 5.6: Calculation of Pi(i > 2), where i = 5.

180◦ without 0◦ and 180◦, because we cannot achieve Lb when ϕ equals such two values.
L ranges from 0 to Lb for a given ϕ (Eq. 5.4). The value of β ranges from 0◦ to 360◦.

Hereafter, for the 3D origami shown in Figure 5.13 (a), we demonstrate various con-
figurations as points (Figure 5.7 (a)) that represent 3D origami pieces achievable without
self-intersections. The crease pattern and choices for selecting 3D candidates are remained
during the exploration. To normalize L, we introduce Lmax, found in the experiment, which
indicates the maximum of L that exists at least one configuration for generating achievable
3D origami. Specifically, we demonstrate 18 samples (Figure 5.7 (b), (c), and (d)) and
their corresponding 3D shapes (Figure 5.7 (e)). We achieve 3D shapes from #1 to #6 by
increasing ϕ from 21◦ to 86◦ while keeping L and β remained as 2.56e-2 Lmax and 36◦,
respectively. By increasing L from 0.95e-2 Lmax to 3.34e-2 Lmax, we achieve 3D shapes
from #7 to #12, where ϕ and β are fixed as 106◦ and 36◦, respectively. We can also achieve
3D shapes from #13 to #18, by increasing β from 157◦ to 167◦ while keeping ϕ and L
remained as 61◦ and 2.59e-2 Lmax, respectively. As a result, we demonstrate that different
3D shapes can be achieved based on the same crease pattern.
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Figure 5.7: Variations in 3D origami by changing configuration.
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5.2 Motion analysis
We describe an along-arc flat-folding, which is triggered by parameter Θ, the angle between
planes Π1 and Π2.

5.2.1 Calculation of degree of freedom
The degrees of freedom of a triangular mesh are represented as Eq. 5.5

DOF = NEo − 3NL − 3, (5.5)

where NEo is the number of edges on the boundary, and NL is the number of holes [79]. In
our work, NEo is represented by Eq. 5.6

NEo = 4N + 2(

⌊
T

2

⌋
− 1), (5.6)

where N indicates the order of rotational symmetry, and T represents the number of ed-
itable points in the 1/N part of the crease pattern. In addition, NL equals zero, thus the
degrees of freedom in our work are represented as

DOF = 4N + 2(

⌊
T

2

⌋
− 1)− 3. (5.7)

According to Eq. 5.7, the 3D origami in Figure 5.8 (a) has 43 DOFs (N = 10 and T = 9).
Within those DOFs, we can axisymmetrically flat fold the 3D origami with decreasing

angle Θ. Specifically, Pi (with even indices) on plane Π2 together with the symmetric P ′
i

fall towards plane Π1 with decreasing Θ (represented as Θ
′ , 0◦ ≤ Θ

′ ≤ Θ, in Figure 5.8
(a)).

For the whole origami, such a process compresses the 3D shape towards plane Π1.
Meanwhile, the 3D origami is locally flat-foldable based on the satisfaction of Kawasaki’s
theorem.Here, we show the interior vertices p5 and p6 (Figure 5.8 (b) and (c)), for which
the 3D points P5 and P6 are convex and concave, respectively. Angle αi,k denotes the k−th
incident sector angle of pi. For p5, because α5,1 = α5,6, α5,2 = α5,5, and α5,3 = α5,4,
α5,1 + α5,3 + α5,5 = α5,2 + α5,4 + α5,6 = 180◦, satisfying Kawasaki’s theorem. Similarly,
we can show that p6 also satisfies Kawasaki’s theorem (Figure 5.8 (c)). In general, interior
vertices satisfy Kawasaki’s theorem because they have a mirror-symmetric property.

To intuitively describe the folding state due to angle Θ
′ , we introduce a folding rate:

FR = 100(1− Θ
′

Θ
)%. (5.8)

Figure 5.9 shows the along-arc flat-folding where the folding rate equals 0%, 20%, 40%,
60%, 80%, and 100% corresponding to (a), (b), (c), (d), and (f), respectively. The origami
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Figure 5.8: Satisfaction of Kawasaki’s theorem for each interior vertex.

Figure 5.9: Along-arc flat-folding with self-intersection-free test.

remains rigid in this folding sequence, which is triggered by continually changing Θ
′ . Self-

intersections could occur during the motion. Here, we enumerate the folded 3D shapes
based on Θ

′ , ranging from Θ to 0◦ in the discrete domain with dense sampling. The folding
sequence is considered as self-intersection-free when none of the enumerated 3D shapes
has self-intersections.

5.2.2 Kinematic behavior
We analyzed the kinematic behavior of the vertices in a designed 3D origami during motion.
For the origami shown in Figure 5.8 (a), without loss of generality, we selected a convex P5

that has four mountain and two valley folded lines and a concave P6 that has two mountain
and four valley folded lines for analysis. We introduced angle φi,k indicating the k−th
dihedral angle at vertex Pi, and k is started from one and assigned clockwise (Figure 5.10
(a) and Figure 5.11 (a)). The relationship between the folding rate and dihedral angles at
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selected vertices P5 and P6 during motion are illustrated in Figure 5.10 (b) and Figure 5.11
(b), respectively.

The maximum dihedral angles at P5 are 119◦, 104◦, 111◦, and 76◦ corresponding to
φ5,1, φ5,2, φ5,3, and φ5,4, respectively. For P6, the maximum dihedral angles are 129◦, 111◦,
98◦, and 94◦ corresponding to φ6,1, φ6,2, φ6,3, and φ6,4, respectively. The knowledge of
these maximum dihedral angles helped us to build a rigid origami structure with double
layered thick composite panels because it is a factor to avoid collision between panels [79].
In addition, based on the kinematic analysis during motion, we could control the dihedral
angles by setting actuators to build self-folding tessellations or deployable architectures.

Figure 5.10: Kinematic behavior of P5.

Figure 5.11: Kinematic behavior of P6.
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5.3 Results
We developed a prototype system for implementing our algorithm as shown in Figure 5.12,
where (a) is used to interactively design the crease pattern, (b) renders the 3D shape, and
(c) shows the whole crease pattern.

Figure 5.12: A prototype system implemented our algorithm.

We show several resulting origami pieces in Figures 5.13 and 5.14. Figure 5.13 shows
(a) a candlestick with a negative global Gaussian curvature, (b) a rugby ball with a posi-
tive global Gaussian curvature, and (c) a vase with a curved base having a positive global
Gaussian curvature and a curved neck having a negative global Gaussian curvature. Here,
our interest lies in the macroscopic behavior of the sheets, and thus we consider the global
Gaussian curvature [73] of an equivalent mid-surface of the folded sheet.

Figure 5.14 shows (a) a lampshade and (b) a bud. P1 in both of them lie on the sym-
metric axis. (c) shows another bud, and (d) and (e) show a ball and a cup, respectively. We
achieved the folding sequences shown in Figure 5.15. Note that P1 stays on the symmetric
axis during motion in Figure 5.15 (a).

For the 3D origami having self-intersections during the motion, we manually modified
the design. Here, we take the shape shown in Figure 5.16 (a) as an example. We can
see that the facets shown in red penetrated each other (Figure 5.16 (b)). In addition, from
Figure 5.16 (c) showing the relationship between the folding rate and dihedral angles at
vertex P5, we note that the folding motion is interrupted by self-intersections when folding
rate is larger than 46%. For the origami shown in Figure 5.16 (a), we adjust its vertices in
crease pattern to achieve the shape shown in Figure 5.17 (a). The modified one can be flat
folded without self-intersections (Figure 5.17 (b) and (c)).
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Figure 5.13: Resulting origami pieces with different ‘global’ Gaussian curvature.

5.4 Summary
We described a design method for a class of axisymmetric 3D origami with generic six-
crease bases, for which the lengths of the crease lines can be regular or irregular. First, we
interactively generate a crease pattern consisting of such generic bases. Then, our method
analytically calculates the geometry with an axisymmetric structure. We demonstrated
various configurations to explore the variations of the calculated 3D origami.

We described an along-arc flat-folding to flat fold the 3D origami axisymmetrically by
continually changing parameter Θ. First, we described the calculation of DOF and the
folding process triggered by changing Θ. We also showed that the 3D origami is locally
flat-foldable based on the satisfaction of Kawasaki’s theorem for each interior vertex pi.
Finally, we analyzed the kinematic behavior by illustrating the relationship between the
folding rate and dihedral angles at selected vertices. Several origami pieces and folding
sequences are presented to demonstrate the validity.

The method described in this chapter have shown several resulting shapes of varying
curvature. It indicates that origami has the potential to fit target surfaces. In the next
chapter, we introduce an inverse-origami-design problem and provide a solution by using
generalized waterbomb tessellations for approximating target 3D surfaces.
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Figure 5.14: Resulting origami pieces.
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Figure 5.15: Folding sequences with self-intersection-free test.

Figure 5.16: Self-intersections occur during folding motion.

Figure 5.17: Modification to enable the origami be flat folded.
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Chapter 6

Approximating 3D Surfaces using
Generalized Waterbomb Tessellations

Origami has the potential to construct 3D shapes of varying curvature by folding thin sheets
of paper along predefined creases. Inverse origami design is another research direction of
designing origami. Comparing to the approaches based on designing the crease pattern,
the inverse-origami-design approach fits a target 3D surface using a calculated crease pat-
tern. Among the types of origami, waterbomb tessellation is a traditional one that can be
used to create geometrically appealing 3D shapes, e.g., the model shown in Figure 6.1
(a). As shown in Figure 6.1, a 3D waterbomb origami (a) is defined by its crease pattern
(b), which contains a set of waterbomb bases (c). Such origami pieces are developable,
which is guaranteed by the fact that the sum of the sector angles around each interior ver-
tex equals 360◦. The waterbomb base, which is also referred to as a regular base, has a
mirror-symmetric property. The base has the geometric feature containing four valley and

Figure 6.1: Geometry of generalized waterbomb origami

two mountain folded lines meeting at the center vertex. Here, we introduce a generalized
waterbomb base (Figure 6.1 (d)) that inherits this geometric feature but could omit the
mirror-symmetric property. Furthermore, we introduce a generalized waterbomb tessella-
tion that contains generalized waterbomb bases. The generalized waterbomb tessellations
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have the potential to be used for approximating target 3D surfaces due to its high degree of
freedom.

In this chapter, we approximate target surfaces, which are parametric surfaces of vary-
ing or constant curvatures, using generalized waterbomb tessellations. An overview of our
method is shown in Figure 6.2. We take a 3D parametric surface, e.g., Figure 6.2 (a), as
an input. Then, we sample u and v coordinates in the parametric uv-plane to achieve a
quad approximation (Figure 6.2 (b)). Next, we generate a base mesh (Figure 6.2 (c)) by
creating waterbomb bases in the quads. Here, our prototype system enables us to generate
base meshes with variable resolutions and modify waterbomb bases interactively. Then, by
applying a simple numerical optimization algorithm to the base mesh, we achieve a devel-
opable waterbomb tessellation (Figure 6.2 (d)). Finally, the user can fold the crease pattern
(Figure 6.2 (e)) to achieve the origami piece (Figure 6.2 (f)). We demonstrate several re-
sulting approximations, which extend the exploration of building developable structures.

Figure 6.2: An overview of our method.

6.1 Approximating target surfaces
We demonstrate the generation of a base mesh in Section 6.1.1. Optimizing the base mesh
to achieve a developable approximation is discussed in Section 6.1.2.

6.1.1 Generation of base mesh
The generation of the base meshes on parametric surfaces is versatile. In particular, we
can generate base meshes on axisymmetric or non-axisymmetric target surfaces. Besides,
owing to the high degree of freedom of the waterbomb tessellation, orientable or non-
orientable target surfaces can be handled. Here, we tile a given surface using quads for the
initial approximation. Parametric surfaces are taken as input in this work. Therefore, we
can easily achieve a set of quads by isometrically sampling u and v coordinates, which vary
within a certain domain D in the parametric uv−plane, of the input parametric surface.
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Hereafter, we explain the case of a catenoid surface as an example. A catenoid surface
(Figure 6.2 (a)) is defined with u, v parameters as:

P (x, y, z) = (cosh
v

c
cosu, cosh

v

c
sinu, v), (6.1)

where u ∈ [0, 2π], v ∈ [−π, π], and c is a non-zero real constant that is set as 2.5 in this
case. As shown in Figure 6.3 (a) and (b), we isometrically sample u and v coordinates
to achieve sampling points. The steps of u and v for sampling are denoted as ∆u and ∆v,
which equal 2π/Nu and 2π/Nv, respectively. Nu indicates the number of quads in one strip,
which is shown in red and green. Nv means the number of strips used for constructing the
approximation. Both Nu and Nv are integers and set as 10 in this case.

Figure 6.3: Initial approximation using quads

As can be observed from waterbomb tessellations, adjacent strips are shifted against
each other by ∆u/2 in the u direction in the uv−plane. A naı̈ve way of doing this is to
shift only odd strips by −∆u/2. However, this works with axisymmetric shapes but fails
with non-axisymmetric ones because quads along boundaries become jagged and cannot
cover the target surfaces. To handle both axisymmetric and non-axisymmetric shapes, we
first temporarily generate Nu + 1 quads for odd strips in the range from us − ∆u/2 to
ue + ∆u/2, where we suppose that the parameter u ranges from us to ue in the given
parameter surfaces. In particular, the first quad’s u ranges from us −∆u/2 to us + ∆u/2,
and the last quad’s u ranges from ue − ∆u/2 to ue + ∆u/2 (Figure 6.3 (b)). In the case
of axisymmetric shapes, the first and the last quads are identical because parameter u is
periodic. We then generate a waterbomb base in each quad and select only a half of the
first and the last waterbomb bases to ensure Nu waterbomb bases in each strip (shown in
Figure 6.5 and discussed below).
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During the initial approximation using quads, we allow the user to adjust the density
of quads by changing Nu and Nv interactively. Figure 6.3 (c) is an approximation created
by double density sampling both in the u and v directions, and thus, it has four times
more quads than that in Figure 6.3 (a) to represent the target surface. The more quads we
use, the more accurately we can approximate the target surface. Considering fabrication
by paper-folding, however, we also have to consider the increase of labor. Balancing the
approximation accuracy and fabrication labor is an interesting problem, which is left as
future work.

Figure 6.4: Modification of waterbomb base

Finally, we merge adjacent bases to achieve a base mesh (Figure 6.5 (c)). Figure 6.5
(a) is an approximation with gaps. By averaging the positions of adjacent vertices (b), we
achieve a base mesh without gaps as shown in (c). Note that there are Nu + 1 bases for odd
strips. Here, we select only the right part of the first base and the left part of the last base
to ensure Nu bases in the odd strips.

6.1.2 Numerical optimization
We apply a simple numerical optimization to base meshes to produce developable surfaces.
We use an angle constraint Eq. 2.1 to define a developable vertex. In our work, we classify
vertices as interior vertices having six adjacent facets and boundary vertices having less
than six adjacent facets. For a developable surface, all the interior vertices should satisfy
the angle constraint.

We implemented the Levenberg-Marquardt algorithm to solve such an optimization
problem. Boundary/interior vertices are viewed as fixed/free nodes, respectively. For each
iteration of the Levenberg-Marquardt algorithm, we evaluate the maximum αmax, mini-
mum αmin, and average αave of the sum of angles around each interior vertex for a termina-
tion criterion. Correspondingly, we introduce the errors of emax, emin, and eave represented
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Figure 6.5: Merging waterbomb bases to achieve base mesh

as:

emax = |360◦ − αmax|.
emin = |360◦ − αmin|.
eave = |360◦ − αave|.

(6.2)

Moreover, we introduce etotal as the maximum among emax, emin, and eave. The procedure
is terminated when etotal is less than ed. In our experiment, we set ed as 1e-5 to produce a
developable surface.

Figure 6.6 shows graphs of convergence created during optimization on the base mesh
(Figure 6.2 (c)), where Figure 6.6 (a) shows the relationship between the numbers of iter-
ations and values of αmax, αmin, and αave. Correspondingly, Figure 6.6 (b) demonstrates
the values of emax, emin, and eave that calculated during the iterations. In this case, etotal
becomes less than 1e-5 when the number of iterations is 198.

6.2 Results
We developed a prototype system using Java to implement our method. We ran our system
on an Intel(R) Core(TM) i7-4770 CPU with an 8-GB-RAM PC. For a given target surface,
our method allows the user to generate base meshes with variable resolutions and then
produces developable approximations. As shown in Figure 6.7, we show four results, each
of which contains a base mesh, its corresponding approximation, and the approximation
with the target surface, as shown in Figure 6.2 (a).
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Figure 6.6: Graphs of convergence created during optimization for producing developable
surface

Table 6.1 shows the parameters in detail and the results of the models shown in Figure
6.7. etotal of each approximation was less than 1e-5 after optimization, with which we con-
sider the approximation to be developable. To evaluate the difference between the resultant
approximation A and the target surface T , we define distance d (A, T ) as:

d (A, T ) = mean [d (x, T )] , x ∈ A,
d (x, T ) = min [d (x, y)] , y ∈ T,

(6.3)

where x and y denote vertices of the approximationA and the target surface T , respectively.
d (x, y) denotes the Euclid distance between x and y. d (x, T ) is the shortest distance be-
tween x and a set of y from T . d (A, T ) is similar in spirit to the Hausdorff distance, which
is used to measure the difference between two surfaces. To compute d (x, T ), we sample
all vertices from the approximation A for x by considering A is a discrete tessellation.
When the target surface T is continuous, Dudte et al. [20] use an optimization procedure
to find the optimized u and v coordinates, which let the distance between y and x become
shortest. Here, we densely sample a set of y by subdividing T , and then find the closest
y for x. d (A, T ) is normalized by the diagonal length of the bounding box of the target
surface T . Note that we are only concerned about the difference from A to T and do not
measure the inverse distance d (T,A); d (A, T ) and d (T,A) are different because they are
not symmetric. In Table 6.1, we note that as the number of waterbomb bases increased,
d(A, T ) decreased, which means that the result became closer to the target surface at the
cost of more computational time.

We fabricated several approximations, shown in Figure 6.8, where (a) shows a catenoid
and (b) shows a cylinder. Both approximations contained 48 waterbomb bases. (c) shows
a sphere containing 75 waterbomb bases, and (d) shows a vase containing 112 waterbomb
bases. For each result shown in Figure 6.8, we demonstrate a 3D model of the approxima-
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Figure 6.7: Approximations with variable resolutions for same target surface

tion, a crease pattern, and an origami piece.
We also approximated several 3D surfaces and show its crease pattern and rendered 3D

model in Figure 6.9, where (a) shows an approximation of a catenoid, (b) a sphere, (c) a
cylinder, (d) a vase, (e) a torus, (f) a hyperbolic paraboloid, (g) a möbius strip. Details of
the target surfaces are demonstrated in Table 6.2.

Each surface ((a) to (e)) has an axisymmetric structure, and thus the boundary vertices
along the left and right parts of the crease pattern are located at identical 3D positions to
form the resulting approximation. Note that these vertices, which are used to connect the
left and right parts of the crease pattern, have six adjacent facets in the 3D model. There-
fore, we also applied our optimization process to these vertices in order to make them devel-
opable. For approximating torus, we not only connect the left and right parts of the crease
pattern, but also the top and bottom parts (when Nv is even). As a result, we can generate a
seamless approximation of torus (Figure 6.9 (e)). Additionally, we show an approximation
of a hyperbolic paraboloid, which is the non-axisymmetric surface in Figure 6.9 (f), and an
approximation of a Möbius strip, which is the non-orientable surface in Figure 6.9 (g). The
Möbius strip approximation is not connected because the waterbomb bases at the start and
end parts of the approximation had different orientations. Meanwhile, we demonstrate the
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Table 6.1: Parameters in detail and statistics of models shown in Figure 6.7

Approximations Nu Nv Bases etotal d(A, T ) Time

(a) 8 6 48 9.68e-6 3.29e-2 0.31 min

(b) 10 7 70 6.54e-6 2.95e-2 0.85 min

(c) 13 9 117 9.80e-6 2.41e-2 9.35 min

(d) 20 14 280 9.94e-6 1.61e-2 158.60 min

Table 6.2: Target surfaces used for generating developable approximations shown in Figure
6.9

Targets Equations (x, y, z)

(a) (cosh v
2.5

cosu, cosh v
2.5

sinu, v), u ∈ [0, 2π] , v ∈ [−π, π]

(b) (cos v cosu, cos v sinu, sin v), u ∈ [0, 2π] , v ∈
[−π
2.2
, π
2.2

]
(c) (cosu, sinu, v), u ∈ [0, 2π] , v ∈ [−π, π]

(d) ((2 + sin v) cosu, (2 + sin v) sinu,−v), u ∈ [0, 2π] , v ∈ [−3, 4]

(e) ((3 + cos v) sinu, (3 + cos v) cosu, sin v), u ∈ [0, 2π] , v ∈ [−π, π]

(f) (u, v, uv), u ∈ [−1, 1] , v ∈ [−1, 1]

(g) ((1 + v
2

cos u
2
) cosu, (1 + v

2
cos u

2
) sinu, v

2
sin u

2
), u ∈ [0, 2π] , v ∈ [−1, 1]

detail results of the approximations (Figure 6.9) in Table 6.3 correspondingly.
In terms of fabrication, folding a waterbomb tessellation is not an easy task because

it requires multi-fold simultaneous actuation. The folding process becomes more difficult
when the waterbomb tessellation contains more waterbomb bases. Pre-folding crease lines
on a sheet of paper can alleviate this problem. However, for a paper containing high density
of creases, the material could become crumpled and the crease lines could become fuzzy
after several pre-foldings. Therefore, we showed only crease patterns and rendered 3D
models (Figure 6.9) instead of results with folded paper. A more effective way for fabri-
cating complex approximations with many waterbomb bases would be printing the crease
patterns on a textile using polymers because a textile can be folded many times without
obvious fatigue.
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Table 6.3: Details of statistics of models shown in Figure 6.9

Approximations Nu Nv Bases etotal d(A, T ) Time

(a) 10 10 100 9.43e-6 2.60e-2 4.79 min

(b) 25 10 250 9.96e-6 1.44e-2 152.27 min

(c) 10 10 100 9.53e-6 1.59e-2 2.58 min

(d) 21 10 210 9.80e-6 1.59e-2 74.09 min

(e) 55 10 550 9.96e-6 8.97e-3 853.18 min

(f) 10 10 100 6.22e-6 1.35e-2 2.35 min

(g) 22 3 66 9.29e-6 1.40e-2 0.44 min

6.3 Summary
We proposed a method for approximating target surfaces, which are parametric surfaces of
varying or constant curvatures, using generalized waterbomb tessellations. First, we de-
scribed the generation of a base mesh by tiling the target surface using waterbomb bases.
Then, we applied a simple numerical optimization algorithm to the base mesh to produce a
developable approximation. Several developable approximations were presented to demon-
strate the validity of our method. We provided a prototype system which enables us to
interactively generate base meshes with variable resolutions and modify waterbomb bases.

Our work is different from Origamizer [77, 80] and the system [81], because ours is
not based on the tucking technique, which hides unnecessary areas of a sheet of paper inside
the shape. Our method is also differs from Freeform Origami [78], which generates a
freeform surface by dragging the vertices of an origami in 3D. In addition, several existing
approximating works were based on modified Miura-ori [98, 74, 20], while we focus on
the waterbomb tessellation, another basic origami tessellation, to fit on target surfaces. We
have demonstrated that our method can tile waterbomb bases on target surfaces, which can
be axisymmetric or non-axisymmetric as well as orientable or non-orientable.

As future work, three aspects of our study can be improved: (i) finding an optimal
density to balance the approximation accuracy and amount of fabrication labor when gen-
erating a base mesh, (ii) achieving a developable approximation while restricting d(A, T ),
that is, the distance between the resultant approximation A and target surface T , and (iii)
generating flat-foldable and self-intersection-free approximations. Furthermore, we hope
this work can be extended to approximate complex 3D models which can be parameterized
into uv−plane and pave the way of fully solving the inverse-origami-design problem.
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Figure 6.8: Fabricated origami pieces
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Figure 6.9: Developable approximations consisting of generalized waterbomb tessellations
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Chapter 7

Conclusion and Future work

In this thesis, we focused on the goal of designing novel triangle-based 3D origami. First,
we proposed three methods for designing axisymmetric 3D origami. In particular, we pro-
posed a design method based on rotationally-symmetric crease patterns. Then, we tuck
such a kind of 3D origami. Last, we proposed a design method for axisymmetric 3D
origami with generic six-crease bases. By using these methods, users can create 3D origami
that satisfies the developable constraint. Second, we proposed a method for approximating
target 3D surfaces using generalized waterbomb tessellations. By applying a simple nu-
merical optimization algorithm, developable tessellations can be achieved. The validity of
our methods is verified through fabrications and simulation.

7.1 Summary of Contributions
We summarize the contributions of this thesis as follows:

• Axisymmetric 3D origami based on rotationally-symmetric crease patterns: We
have described a design method for a family of axisymmetric 3D origami folded from
rotationally-symmetric crease patterns. We focused on the axisymmetric property to
introduce a rotationally-symmetric crease pattern. Benefiting from the symmetric
property, developable constraint can be satisfied. Then, we described the details of
the calculation of the geometry. For the calculation of Pi(i > 1), the two intersection
points of the solution circles were selected as solution candidates. Each of them was
used to create different 3D models. During the calculation, we found a special case
where the two solution circles are identical; thus, the candidate solutions are not two
points but all the points on the solution circle. We have applied the special case in
designing origami pieces with a flat center surrounded by triangular facets.

Furthermore, we have analyzed the effects of variations by changing two parameters:
angle ϕ and Θ. First, we have achieved a motion that rigidly transforms one fold-state
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to unfold-state by continuously changing ϕ to 90◦. Second, we introduced a way of
folding called “along-arc flat-folding” by changing the value of Θ. We have showed
the along-arc flat-folding sequences and practiced such folding in real origami pieces.
The presented rigid motions can be potentially used for self-folding mechanism.

• Tucking axisymmetric 3D origami: We focused on a family of axisymmetric triangle-
based 3D origami folded from the rotationally-symmetric crease patterns and pro-
posed a computational design method for tucking such origami. The proposed method
can handle the crease pattern consisting of blank spaces emerged during the 3D edi-
tion. Such blank spaces are caused by interior vertices with non-zero angle deficit.
We have considered the edge symmetry of the blank spaces and divided such areas
into triangles by adding additional creases and vertices. Then, we have described the
calculation of the shapes folded from the areas, which are called as flaps outside or
tucks inside of the edited shapes. By adding flaps or tucks, we have made the edited
3D shapes realizable through tucking. We have implemented a prototype system
which supports 3D editing and demonstrated several novel 3D origami with flaps or
tucks. Finally, on the application side, we have described a load-bearing experiment
on a stool shape-like origami to demonstrate the potential usage.

• Axisymmetric 3D origami with generic six-crease bases: We have described a de-
sign method for a class of axisymmetric 3D origami with generic six-crease bases,
for which the lengths of the crease lines can be regular or irregular. First, we interac-
tively generate a crease pattern consisting of such generic bases. Then, our method
analytically calculates the 3D origami shape with an axisymmetric structure. We
have demonstrated various configurations to explore the variations of the calculated
3D model. We illustrated several novel 3D origami pieces, some of which can have
varying curvature.

Furthermore, we have described a rigid folding motion that can deploy or flat fold
the 3D origami axisymmetrically by continually changing parameter Θ. We have
described the calculation of degree of freedom and the folding process triggered by
changing Θ. Then, we have shown that the 3D origami is locally flat-foldable based
on the satisfaction of Kawasaki’s theorem. Finally, we have analyzed the kinematic
behavior by illustrating the relationship between the folding rate and dihedral angles
at selected vertices on 3D origami. This rigid one-parameter motion has potential
applications ranging from self-folding tessellations to deployable architectures.

• Approximating 3D surfaces using origami tessellations: We have proposed a
method for approximating target surfaces, which are parametric surfaces of vary-
ing or constant curvatures, using generalized waterbomb tessellations. First, we have
described the generation of a base mesh by tiling the target surface using waterbomb
bases. Then, we have applied a simple numerical optimization algorithm to the base
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mesh to produce a developable approximation. Several developable approximations
were presented to demonstrate the validity of our method. The implemented sys-
tem enables us to generate base meshes with variable resolutions and modify wa-
terbomb bases interactively. Our work provides a solution for the inverse-origami-
design problem based on the generalized waterbomb tessellations.

Existing design methods for 3D origami have demonstrated lots of geometrically ap-
pealing designs. However, these methods are focused on specific types of origami, and thus
the variations of the shapes made by these methods are still small compared to the varia-
tions of folding a piece of paper. To explore new variations, we proposed several design
methods for triangle-based 3D origami. By using our prototype systems, users can design
such a kind 3D origami, which could not be easily generated by using existing methods.

In addition, existing design methods have put their emphasis on creating 3D shapes but
not on investigating the deformations. In this thesis, as for the axisymmetric 3D origami, we
demonstrated rigid folding motions about a common axis. Besides, we illustrated various
deformations by changing input configurations. These results can be the basis for creating
novel foldable mechanisms.

For designing non-axisymmetric 3D origami, we use generalized waterbomb tessel-
lations to approximate parametric surfaces. Fitting target 3D surfaces using origami can
be viewed as an inverse-origami-design problem. Although several methods have been
proposed, most of them are based on Miura-ori. It is the first time to use waterbomb tes-
sellations for solving this problem. Owing to the high degree of freedom, non-orientable
target surfaces can be handled. In addition, by using the same optimization process on a
well-defined initial base mesh, our method can be easily extended on general 3D surfaces.
Furthermore, the procedure can be applied to different origami tessellation for exploring
better approximations.

The proposed methods in this thesis are mainly classified into two parts: i) design meth-
ods for axisymmetric 3D origami, ii) approximating parametric surfaces using generalized
waterbomb tessellations. For designing a complex 3D origami, waterbomb tessellations
with high resolution could an option. On the other hand, curved-crease origami has demon-
strated its ability to form a 3D structure using a small number of creases. Besides, the tuck
technique has been used for hiding a part of paper into the model. A combination of the
curved-crease origami and the tuck technique could be another solution for designing com-
plex 3D origami.

7.2 Future Work
We envision our long-term goal. Although our research provided a number of novel 3D
origami, several challenges and open questions remain. Three questions are of particular
important in the context of designing and applying origami:
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Thickness of origami: Considering the thickness of origami in the design process is a
relatively new area. This topic began with the application of origami to the engineering, in
which the thickness of the material cannot be ignored. However, most of the design meth-
ods, including the methods proposed in this thesis, are based on an ideal zero-thickness
condition. Adding thickness is one direction of our research, which could board of appli-
cation of the proposed origami.
Fully analysis in terms of folding motion: We have demonstrated and analyzed one-
parameter folding motions. Calculating the folding path is a key issue for designing a
self-folding origami. Therefore, we intend to put our emphasis on the fully analysis of the
rigid motion for a general case.
Function-driven design of origami: Currently, we design an origami based on the geo-
metric constraints. Thus the design space could not match the function, which is required
for specific application. In the future, a combination of geometry and function considera-
tions is needed in the design process.

Finally, we are also noticed that kirigami, with folding and cutting, can also generate
complex 3D shapes and be a solution for specific applications ranging from self-foldable
robots to architecture. A survey of this subject is given by [7]. Without the developable
constraint, which origami should obey, kirigami shows its flexible to some extent. Using
kirigami to design 3D shapes could also be one direction of our research.
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