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Seasonal Terrain Texture Synthesis
via Köppen Periodic Conditioning
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Fig. 1 3D terrain models textured using our method. Our method can generate terrain textures that reflect climatic and
seasonal changes using a heightfield and monthly temperature, precipitation, and insolation as inputs. (Top) Textures for
April and October in the frigid zone. (Middle) Monthly changes from April to October. (Bottom) 3D models (with a different
heightfield) generated using typical textures for (left) torrid, (center) subarctic, and (right) frigid zones, respectively.

Abstract This paper presents the first method for

synthesizing seasonal transition of terrain textures for

an input heightfield. Our method reproduces a seamless

transition of terrain textures according to the seasons

by learning measured data on the earth using a convo-

lutional neural network. We attribute the main seasonal

texture transition to vegetation and snow, and control

the texture synthesis not only with the input heightfield

but also with the annual temperature and precipitation

based on Köppen’s climate classification as well as inso-

lation at the location. We found that month-by-month
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synthesis yields incoherent transitions, while a näıve

conditioning with explicit temporal information (e.g.,

month) degrades generalizability due to the north-south

hemisphere difference. To address these issues, we

introduce a simple solution – periodic conditioning on

the annual data without explicit temporal information.

Our experiments reveal that our method can synthesize

plausible seasonal transitions of terrain textures. We

also demonstrate large-scale texture synthesis by tiling

the texture output.

Keywords Deep learning · GAN · Texture synthesis ·
Terrain

1 Introduction

We can see a wide range of earth landscapes due to

terrain and climate variations. The landscape appear-

ance can also change dramatically with seasons, even in

the same location. For example, in regions with large
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temperature differences between summer and winter,

such as subarctic regions, trees are in full leaf in summer

and snow in winter. Suppose we can reproduce these

appearance differences due to terrain, climate, and

seasonality in a 3D terrain model. We can then explore

a wide range of applications in fields such as video and

gaming productions and in visualizing the impact of

global warming and other climate change effects on

the earth. However, existing studies on terrain and

landscape in computer graphics have mostly focused

on the generation of 3D terrain geometry [19,44,20,

41,11,24,35,18], with relatively little attention paid to

terrain texture synthesis [42,43]. In particular, to the

best of our knowledge, there are currently no methods

for generating terrain textures that take into account

transitions due to climate and season.

The terrain texture variations due to climate

and seasonality are mainly caused by vegetation and

snow. Regarding vegetation, Köppen’s climate classifi-

cation [34] focuses on differences in vegetation, which

uses temperature and precipitation as explanatory vari-

ables to classify climate. For snow, the terrain geometry

affects snow accumulation and melting; for example,

snow tends to accumulate more and melt more slowly

in highlands. Also, in the north hemisphere for example,

south-facing slopes receive more sunlight, so snow

accumulates more slowly and melts more quickly than

on north-facing slopes. Other factors that affect climate

and season include, for example, latitude. However, var-

ious places with different latitudes have similar climates

due to the influence of ocean currents. Therefore, lati-

tude is not an appropriate control parameter for climate

and season. Based on these considerations, we propose

a method for generating terrain textures that reflect

climate and season using a heightfield and monthly

temperature, precipitation, and insolation for one year

as inputs. By using a convolutional neural network

(CNN) trained with our novel measured dataset, we can

synthesize terrain textures in all seasons for the input

terrain heightfield (see Figure 1).

This study aims to address the following two issues.

First, the generated terrain textures should not depend

on month information, such as “February is winter

and August is summer,” because seasons may differ

even in the same month, for example, in the northern

and southern hemispheres. Furthermore, suppose a

location on a hemisphere has a terrain geometry and

annual temperature and precipitation similar to those

on the other hemisphere with a half-year delay for

the annual data. These locations should have sim-

ilar texture transitions; as proof, Köppen’s climate

classification does not depend on month information.

Second, there is no available dataset of heightfields with

ground-truth terrain textures that include temperature

and precipitation information, which is necessary for

the supervised training of our network.

This paper offers the following simple solutions.

For the first issue, we control the temporal texture

transition by ordering the input monthly data, i.e., tem-

perature, precipitation, and insolation. Namely, we syn-

thesize terrain textures for one year month-by-month

while changing the order of the annual data periodically

so that the target month’s data come first. We refer to

our technique as Köppen periodic conditioning, which

yields better generalizability across the north and south

hemispheres. We offer smooth inter-month transition

via feature map interpolation. For the second issue,

we construct a novel dataset combining measured data

from multiple data sources such as space shuttles and

satellites. As no competitive methods exist, we validate

the effectiveness of our method through an ablation

study comparing several variants with different inputs,

such as latitude and explicit month information. We

further demonstrate large-scale texture synthesis by

tiling texture outputs.

2 Related Work

3D terrain generation. A number of terrain gen-

eration methods have been proposed to support the

production of 3D terrain models [14], with a particular

focus on heightfield generation. For example, Guérin et

al. [19] trained a CNN on the space shuttle 3D terrain

data (NASA SRTM) to generate a realistic heightfield

from a sketch. In a recent study by Guérin et al. [20],

a multigrid method can also be used to interactively

generate heightfields by converting gradient manipu-

lations from sketch input to elevation values in real

time. However, these methods do not generate terrain

textures corresponding to the heightfields.

Terrain appearance simulation. Vegetation and

snow cover are two of the most important elements for

representing seasonally changing landscapes. For vege-

tation, computer graphics has a long history of research

on plant growth simulation and modeling [17,27,4,36,

22,5]. Makowski et al. [25] focused on the relationship

between temperature and precipitation as a means of

controlling models of vegetation ecosystems and incor-

porated these as parameters in their simulations. Palu-

bicki et al. [29] built on these geographic parameters to

allow for more microscopic vegetation simulations. In

snow cover simulations, solar radiation is also used as

an environmental information other than temperature

and precipitation [13,10]. A similar study [3] used solar
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Temperature

Instance
Norm

KPD ResBlk: Replacement of SPADE ResBlk with our
                       Köppen Periodic Denormalization (KPD) 

(Element-wise)
Multiply Add

Conv

Heightfield

Köppen Periodic Denormalization (KPD)User inputs for month m Our network architecture

KPD
ResBlk

KPD
ResBlk

Precipitation Insolation

m
on

th
 m

(m
)

m
on

th
(m

+1
)

m
on

th

(m
+1

0)
m

on
th Conv Conv

Terrain 
texture

for month m

Concatenated input
for month m

Concatenated input 
for month m

γm

βm

-40

-20

0

20

60[℃]

40

0

100

200

300

400

2 3 4 5 6 7 8 910 1211

500[mm]

1

(m
+1

0)
m

on
th

(m
)

m
on

th
(m

+1
)

m
on

th

Concat
C

Temperature

Precipitation

m
on

th
 m

(m
+1

0)
m

on
th

m
on

th
 m

(m
)

m
on

th
(m

+1
)

m
on

th

Fig. 2 Overview of our method. To output a terrain texture for month m (where m = 1, 2, . . . , 12), one-year temperature,
precipitation (both represented as constant maps), and insolation maps are ordered (where M(i) = (i mod 12) + 1),
concatenated with the target heightfield (left), and fed to the Köppen Periodic Denormalization (KPD) layer (middle). The
concatenated input for month m is injected repeatedly at multiple scales (right). One-year textures are generated by repeating
the whole process for each month m. Note that heightfields in this paper are visualized using linear normalization for better
display.

irradiance in glacier simulations. Argudo et al. [2] pro-

posed a method to generate a variety of ground surface

conditions, taking into account both vegetation and

snow cover. Their method constructs a coherent multi-

layer dictionary that represents relationships among

parameters such as topographic elevation, vegetation

density, and irradiance. These simulation methods can

produce photorealistic scenes with snow or vegetation.

However, they cannot handle seasonal changes over an

annual cycle, taking into account both vegetation and

snow cover. In addition, although our work is similar

to theirs in that they use various geographic data, our

problem setting differs from their works in that our goal

is to obtain topographic textures.

Terrain texture synthesis. Terrain textures are
also used to represent large-scale topography and

for geospatially based artworks such as panoramic

maps [37,7]. The existing study on terrain texture

generation by Spick et al. [42] can generate four-channel

textured heightfields via supervised learning using

CNNs. Zhu et al. [45] proposed a method to generate

satellite images from the labeled map data. Panagitou

et al. [30] presented a framework for generating both

terrain textures and heightfields using generative ad-

versarial networks (GANs). However, these methods do

not account for seasonal transitions in terrain textures

and do not allow user control over the generated

heightfields and terrain textures.

Dachsbacher et al. [12] proposed a method for

generating terrain textures using geographic data on

temperature, precipitation, and solar radiation, in ad-

dition to heightfields. This method classifies each pixel

as rock, vegetation, water, or snow based on the given

geographic data, and colors it according to the classi-

fication result. However, such a method suffers from

the problem of representing colors that continuously

change with the seasons. In addition, this method

requires pixel-by-pixel temperature and precipitation

maps, but it is costly for the user to prepare such

input. Although such parametric or rule-based texture

generation methods are often effective for generating

textures at a specific time instance, they are difficult to

control for continuous transition. Our method, on the

other hand, can generate smooth time-varying terrain

textures with a simple control using temperature and

precipitation.

Image-to-image translation. Image-to-image trans-

lation techniques have evolved rapidly with the advent

of U-net [39], GANs [15] and diffusion models [21]. A

wide variety of methods [31] exist, such as pix2pix [23],

SPADE [32], and Palette [40] for supervised learning

of transformations between domains, CycleGAN [46]

for unsupervised learning, and BicycleGAN [47] and

Swapping Autoencoder [33] for multimodal transforma-

tions. These methods have also been used to reproduce

seasonal changes such as summer to winter. However,

in order to create terrain textures that account for

various climates and seasons, users need to prepare

multiple reference images in advance. In our study, by

focusing the extensibility of the SPADE’s denormal-

ization layer [32], we extend it and introduce a novel

denormalization layer that processes heightfields and

monthly temperature, precipitation, and insolation for

one year. This allows the generation of a variety of

terrain textures reflecting climates and seasons without

the use of reference images.



4 Toshiki Kanai et al.

3 Our Method

Figure 2 summarizes our method. Our inputs are a

heightfield and monthly temperature, precipitation,

and insolation data for one year. We train a CNN

in a supervised manner to synthesize terrain textures

reflecting the corresponding climate and season. As the

CNN architecture, we extend the spatially denormaliza-

tion layer (SPADE) by Park et al. [32] for our purpose.

Whereas the original SPADE block accepts a semantic

mask to enforce spatial layout for photorealistic se-

mantic image synthesis, there are several extensions of

denormalization layers for handling geometric informa-

tion [26,38], optical flows [26], and shadow removal from

terrain landscapes [43]. We adopt a denormalization

layer to inject information on heightfield, temperature,

precipitation, and insolation at multiple scales. For

training, because there is no dataset for our purpose,

we create a novel dataset using the geospatial analysis

platform Google Earth Engine [16]. Hereafter we ex-

plain the details of conditioning with denormalization

layers and dataset construction.

3.1 Conditioning in Denormalization Layer

We aim to synthesize a terrain texture for each month

from the inputs (and later employ inter-month in-

terpolation in Section 3.2). A straightforward way

would be to feed just one month of information and

output a texture month-by-month, just like an ordi-

nary image-to-image translation. Unfortunately, this

approach yields temporally inconsistent textures, as we

demonstrate later in Section 4.2. Instead, we feed one

year of information to our network to account for the

annual transition. In this case, a natural question is

how we can signal the target month’s information to

the network. A näıve approach would be to feed the

target month’s index to the network explicitly, but this

approach does not generalize across the north and south

hemispheres, as explained in Section 1.

Our solution is to rotate the one-year data pe-

riodically so that the target month’s data come to

the front (Figure 2, left). More formally, suppose we

want to synthesize a texture for month m (where

m = 1, 2, . . . , 12). We order each of the annual tem-

perature, precipitation, and insolation according to the

sequence of {m,M(m),M(m + 1), . . . ,M(m + 10)},
where M(i) = (i mod 12) + 1. For example, in the

case of October (i.e., m = 10), the sequence becomes

{10, 11, 12, 1, . . . , 9}. The sequences of temperature and

precipitation are converted into constant maps of the

same size as the input heightfield, concatenated to-

gether with the insolation maps and heightfield in the
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Fig. 3 Feature map interpolation between consecutive
months. The feature maps {β, γ} for months m and m + 1
are linearly interpolated with parameter t ∈ [0, 1] and then
fed to the denormalization block.

channel direction, and then fed to our Köppen Periodic

Denormalization (KPD) block (Figure 2, middle).

3.2 Network Design and Extensions

Network architecture and loss functions. Our network

architecture is a simple extension of that of SPADE [32].

Namely, we replace the SPADE residual blocks (or

ResBlk) with our KPD ResBlk (Figure 2, right), where

the SPADE blocks are replaced with our KPD blocks.

We use the same loss functions as those of the SPADE

network, except that we omit the loss for the variational

autoencoder (VAE) because we do not use VAE.

Feature map interpolation for inter-month texture tran-

sition. So far, we can generate monthly terrain tex-

tures, but it is important to be able to handle continu-

ous seasonal changes between months when considering

applications such as video production. Our method

can obtain continuously changing terrain textures by

interpolating the feature maps. Specifically, during in-

ference, the feature maps {βm, γm} and {βm+1, γm+1}
in our KPD block for months m and m+1 are linearly

interpolated with parameter t ∈ [0, 1] (Figure 3).

β′ = (1− t)βm + t βm+1, γ′ = (1− t) γm + t γm+1.

(1)

The interpolated {β′, γ′} are then used in our KPD

block.
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3.3 Dataset

We construct a dataset for training using the geospa-

tial analysis platform Google Earth Engine [16]. Our

dataset consists of four types of observational data

and two types of derived data. The observational data

are heightfields, corresponding monthly temperature

and precipitation data for one year, and terrain tex-

tures, all observed in 2020 and publicly available.

The heightfields are obtained from NASADEM [28],

and the spatial resolution is 30 meters per pixel. For

temperature and precipitation, we use the monthly

averaged data of ERA5 [9]. Our terrain textures are

the Level-2 product of the Sentinel-2 land observation

satellite [1], in which atomospheric effects (e.g., faint

clouds) and terrain shadings are removed to some

extent. The spatial resolution is 10 meters per pixel.

Our derived data are cloud masks and insolation maps.

Cloud masks are binary masks to specify clouds and

cloud shadows in the terrain textures; although the

satellite images were taken by two satellites every five

days, cloudy sites might often be covered by clouds

with their shadows. We thus synthesize terrain textures

from one-month satellite images with minimum clouds

and shadows, which are extracted as cloud masks [6].

To eliminate the effects of clouds and shadows during

training, we exclude them in calculating loss functions

using the cloud masks. Before subdivided into 256×256

tiles, the insolation maps are calculated by averaging

the direct solar radiation for every hour for the 15th

day of every month using ray casting, considering the

solar positions at specific longitudes1.

Our dataset includes 97 sites randomly sampled

from land territories while excluding artificial struc-

tures. The sampled sites are categorized according to

Köppen’s climatic divisions as follows: A (torrid) 13

sites, B (arid) 32 sites, C (temperate) 27 sites, D

(subarctic) 15 sites, and E (frigid) 10 sites. A total

of 10 sites, two randomly selected from each of the

five climate categories, were used as test data, and

the remaining 87 sites were used as training data.

Each site was sampled at 0.5 degrees latitude and

longitude, and the resulting image data has a resolution

of 5, 500× 5, 500 pixels and was divided into small tiles

of 256×256 pixels. We also excluded the following sites;

1) sites with elevations less than 100 meters, which

tend to contain artificial structures, and 2) sites with

missing areas in the terrain texture that exceeded five

percent of 256× 256 pixels (e.g., the gray boxes in the

ground-truth (GT) textures in Figure 6). Note that

the black pixels in the GT textures of Figures 6 and

1 We used pvlib for calculating the solar altitude from the
latitude.

7 are missing areas due to clouds. Consequently, the

dataset contains 414K terrain textures and 41K height-

fields at a resolution of 256 × 256 pixels. We matched

the resolutions of heightfields and insolation maps to

that of terrain textures (i.e., 256 × 256) using linear

interpolation, whereas we used averaged temperature

and precipitation values within each heightfield.

Note that all the climate categories to which each

site belongs are based on the study by Chen et al. [8].

Because temperature and precipitation vary somewhat

from year to year, the combinations of climate divisions

and temperature/precipitation in this paper do not

necessarily correspond to the definition of each climate

division.

4 Results

4.1 Experimental Setting

We implemented our method using Python and Py-

Torch and ran on an NVIDIA RTX A6000 for training

and inference. The Adam optimizer was used with a

learning rate of 0.0002 and (β1, β2) = (0, 0.999), respec-

tively. The batch size used was 32, and the model was

trained for 20 epochs, which took approximately four

days. The results reported are based on the test data

and not the training data. Some values of temperature

and precipitation in the dataset are fictional.

To validate our method, as there are no existing

methods with the same objective, we conducted an

ablation study by comparing it with different condi-

tions. We denote temperature as T, precipitation as P,

month index as M, latitude as L (where T, P, M, and

L are represented as constant maps whose resolution

is 256 × 256), and insolation maps as S. We omit

heightfield symbols to shorten the descriptions because

all conditions require heightfields. In the following ex-

periments, the resolution of output textures is 256×256

pixels and the spatial resolution is 10 meters per pixel.

Condition 1 (T′
12 +P′

12 +M): We fed a heightfield,

fixed-ordered temperature T′
12 and precipitation

P′
12 for one year, and month index M.

Condition 2 (T1 +P1): We fed a heightfield, one-

month temperature T1 and precipitation P1.

Condition 3 (L+M): We fed a heightfield, latitude

L, and month index M. The latitude L is an

approximation of average insolation.

Condition 4 (T12 +P12): We fed a heightfield, and

periodically-rotated temperature T12 and precipita-

tion P12 for one year (as explained in Section 3.1),

without insolation maps S.
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Fig. 4 Qualitative comparison of terrain textures generated by changing only the input heightfields. We generated the 3D
terrain models using the terrain textures in the red rectangles and the input heightfields. The result texture patterns differ
depending on the terrain shapes.
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Fig. 5 Qualitative comparison of terrain textures obtained via (a) output image interpolation and (b) feature map
interpolation. The terrain turns uniformly white in (a), while the snow increases gradually from top to bottom in (b).

Ours (T12 +P12 + S12): We fed a heightfield, and pe-

riodically-rotated temperature T12, precipitation

P12, and insolation S12 for one year.

The input maps are concatenated in the channel direc-

tion.

4.2 Qualitative Evaluation

Comparison of Conditions 1-4 and Ours. Figure 6

shows a qualitative comparison of Conditions 1-4 and

our method. The top results show that Conditions 1

and 3 are poorly reproducible throughout the year.

Condition 2 exhibits an extreme decrease in vegetation

from March to June. Condition 4 and our method

produced textures that reflected consistent seasonal

changes that were close to the ground truth throughout

the year. In the lower results, Condition 1 produced

dry textures. In Condition 2, the change from June

to September is extreme. In Conditions 3 and 4, the

seasonal changes are continuous but poorly reflect

summer vegetation. Our method produced textures

that were closer to the ground truth than the other

conditions. The black area in the ground truth is the

missing area where the image of the ground surface

could not be obtained.

Verifying adaptability to input periodicity. We verified

that our method depends not on month indices but only

on the temperature and precipitation transitions to

reflect seasonal texture differences. Figure 7 compares

Condition 1 (T′
12 +P′

12 +M) and Condition 4 (T12 +

P12), feeding temperature and precipitation with a

half-year delay. Condition 1 relies on month indices

and cannot account for the temperature and precipi-

tation periodicity to generate photorealistic textures,

exhibiting almost blue-or-white with grid-like artifacts.

Condition 4 successfully handles the same temperature

and precipitation transitions despite the half-year delay.

Note that the quantitative assessment in Table 1 does

not reflect these extreme differences because there is

less land in the southern hemisphere and, therefore, less

southern hemisphere data in the dataset.



Seasonal Terrain Texture Synthesis via Köppen Periodic Conditioning 7

Table 1 Quantitative comparison of the different input
conditions. The bold and underlined values show the best
and second-best scores.

RMSE ↓ SSIM ↑ LPIPS ↓ ∂AD↓ ∂SSIM↓
Cond. 1 (T

′

12 +P
′

12 +M) 64.3 0.57 0.47 123.3 0.13
Cond. 2 (T1 +P1) 75.7 0.52 0.49 124.8 0.16
Cond. 3 (L+M) 66.8 0.55 0.46 116.9 0.14
Cond. 4 (T12 +P12) 61.1 0.52 0.44 120.8 0.11
Ours (T12 +P12 + S12) 59.3 0.52 0.44 123.3 0.11

Verifying input dependency. Figure 8 shows qualitative

comparisons with varying input temperature and pre-

cipitation, respectively. The continuous changes in the

terrain textures with the varying input temperature

and precipitation confirm that our method can syn-

thesize textures that reflect climate and seasons. For

example, in July, the cooler the temperature and the

higher the precipitation, the greener the vegetation. In

October and November, colder temperatures and more

precipitation lead to more snow accumulation.

Figure 4 shows qualitative comparisons with varying

input heightfields. Even with the same temperature

and precipitation input, the resultant textures differ for

different terrain shapes. It can be seen that heightfields

play an important role in texture synthesis.

Verifying feature map interpolation. Figure 5 shows a

comparison between the results of linear interpolation

at (a) the output texture level and (b) the feature map

level (explained in Section 3.2), to obtain continuous

seasonal transition between two adjacent months in the

winter season with snow cover. (a) The output texture

interpolation does not take elevation into account and

shows only a simple hue change. Contrarily, (b) the fea-

ture map interpolation shows the plausible progression

of snow cover from higher elevations.

4.3 Quantitative Evaluation

For quantitative evaluation with reference to the

ground-truth textures, we adopt RMSE, SSIM, and

LPIPS as evaluation metrics. To evaluate the validity

of the seasonal transitions, we also define novel metrics,

i.e., ∂AD and ∂SSIM, which are defined as follows:

∂AD = E [||Gm+1 −Gm| − |Tm+1 − Tm||] , (2)

∂SSIM = E [|SSIM(Gm+1 −Gm)− SSIM(Tm+1 − Tm)|] ,
(3)

where m is a month index, G is a ground-truth texture,

and T is an inferred texture.

Table 1 shows the result of quantitative comparison

with different input conditions. As can be seen in

the table, Ours won the most frequently. Although

Conditions 1 and 3 scored the best for SSIM and ∂AD,

respectively, these conditions show much worse RMSE,

which consequently results in low-quality textures, as

discussed in Section 4.2. Note that the inconsistent

score rankings among the evaluation metrics in Table

1 stem from the different characteristics of the metrics

and resultant images, which is common in evaluations

of machine learning techniques. Further investigation is

left for future work.

5 Discussions

This study aims to generate seasonal changes in

mountainous regions, taking into account vegetation

and snow cover. Our method uses temperature and

precipitation as environmental information based on

the Köppen’s climate classification and also considers

insolation. Insolation contributed to the accuracy, espe-

cially when generating snowy textures for subarctic and

arctic zones distributed at high latitudes. This may be

due to the fact that, in high-latitude regions, the annual

sun elevation changes significantly, and when the sun is

low, there is a clear distinction between slopes exposed

to direct sunlight and those that are not, resulting in

differences in ground surface temperature.

We discuss the controllability of our method. Our

method can generate various terrain textures from the

corresponding user inputs. Heightfields can be obtained

from existing DEM data or created using existing tools.

The temperature and precipitation data can be selected

from typical data of climatic divisions with additional

modification if necessary. The insolation maps can be

calculated automatically, as mentioned in Section 3.3.

We do not rely on pixel-level temperature/precipitation

maps because we have to employ physics simulations

to obtain such maps, considering other factors, such

as wind and pressure, which drastically deteriorates

usability. We can also handle large-scale scenes by

seamlessly connecting adjacent texture tiles, as demon-

strated in Figure 1 (see Appendix A for the details).

6 Conclusions and Future Work

In this paper, we have for the first time addressed the

terrain texture generation that can control seasonal

transitions for an input heightfield. To achieve this, we

proposed a supervised learning framework using a CNN

that includes monthly temperature, precipitation, and

insolation as conditional signals. Our method can ap-

propriately reflect seasonal transitions of the generated

terrain texture by periodically changing the input order

of monthly temperature, precipitation, and insolation.
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In addition, we created a novel dataset based on actual

observations from space shuttles and satellites to train

the CNN. The experiments showed that our method

can generate realistic terrain textures corresponding to

the input signals.

As a future challenge, we would like to improve the

accuracy of terrain texture generation in areas with

heavy rainfall, in particular, the torrid zones. Some

satellite images for the torrid zones contain thin clouds

that could not be removed. Higher quality datasets

produced through the further development of remote

sensing technology will improve the resultant quality.

Our inputs and outputs have a one-to-one correspon-

dence and have no randomness. This design was made

because simply adding randomness would degrade the

quality of the generated terrain textures. To account for

various factors not considered in the input conditions, it

might be useful to introduce some randomness to enrich

the output variations. In particular, an interesting

avenue of future work is to integrate our periodic

conditioning into the modern architectures of diffusion

models to explore output variations.
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Peytavie, A., Galin, E.: Coherent multi-layer landscape
synthesis. Vis. Comput. 33(6–8), 1005–1015 (2017)

3. Argudo, O., Galin, E., Peytavie, A., Paris, A., Guérin,
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A Large-scale Texture Synthesis by Tiling

Outputs

To obtain a large terrain texture corresponding to a height-
field larger than the input/output resolution (i.e., 256 ×
256) of our texture generation CNN, we seamlessly connect
adjacent output textures using alpha blending. We divide an
input heightfield into small tiles of 256 × 256 pixels with a
stride of 128 pixels and feed them to the texture generation
CNN to obtain small texture tiles corresponding to each
heightfield tile. To blend the neighboring texture tiles, we
blend the quarters (i.e., 128 × 128 pixel regions) of each
texture tile, which are covered by four neighboring tiles except
for the heightfield boundaries. By applying an alpha map
whose alpha values are defined by normalized distances from
the center pixel, we can obtain a large terrain texture without
noticeable seams. Figure 1 shows the rendered result with
an alpha-blended texture corresponding to a heightfield of
approximately 5, 500×5, 500 pixels. For the temperature and
precipitation in generating large-scale terrain textures, the
user can choose whether to specify them on a per-tile basis
or to use a constant value for the entire area, depending on
the quality desired by the user. In the result of Figure 1,
the temperature is varied by −0.6◦C per 100m elevation
difference (standard temperature reduction rate) between the
entire elevation average and the per-tile elevation average.
While we used the same value for precipitation for simplicity,
high-quality textures were obtained.
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Fig. 6 Qualitative comparison of terrain textures obtained by Conditions 1-4 and our method. The black pixels in the GT
texture are missing areas due to clouds. The grey boxes with “N/A” indicate that the textures were excluded from the dataset
due to the high deficiency level. See Section 3.3 for the details.
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Fig. 7 Qualitative comparison of terrain textures obtained by Conditions 1 and 4 for contrasting the conditioning using
month index maps (Condition 1) and our periodic conditioning (Condition 4). The black pixels in the GT texture are missing
areas due to clouds.
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